Issue 37

P.S. van Lieshout et al., Frattura ed Integrità Strutturale, 37 (2016) 173-192; DOI: 10.3221/IGF-ESIS.37.24 191 [30] Carpinteri, A., Brighenti, R., Macha, E., Spagnoli, A., Expected principal stress directions under multiaxial random loading. Part II: numerical simulation and experimental assessment through the weight function method. International Journal of Fatigue, 21 (1999) 89–96. [31] Carpinteri, A., Spagnoli, A., Multiaxial high-cycle fatigue criterion for hard metals. International Journal of Fatigue, 23 (2001) 135–145. Retrieved from www.elsevier.com/locate/ijfatigue. [32] Ronchei, C., Carpinteri, A., Fortese, G., Spagnoli, A., Vantadori, S., Kurek, M., Lagoda, T., Life estimation by varying the critical plane orientation in the modified Carpinteri-Spagnoli criterion. Frattura Ed Integrita Strutturale, 9(34) (2015) 74–79. http://doi.org/10.3221/IGF-ESIS.34.07. [33] Papadopoulos, I., Critical Plane Approaches in High-Cycle Fatigue: on the Definition of the Amplitude and Mean Value of the Shear Stress Acting on the Critical Plane. Fatigue Fracture of Engineering Materials Structures, 21(3) (1998) 269–285. http://doi.org/doi: 10.1046/j.1460-2695.1998.00459.x. [34] Susmel, L., Tovo, R., Benasciutti, D., A novel engineering method based on the critical plane concept to estimate the lifetime of weldments subjected to variable amplitude multiaxial fatigue loading. Fatigue and Fracture of Engineering Materials and Structures, 32 (2009) 441–459. http://doi.org/10.1111/j.1460-2695.2009.01349.x. [35] Susmel, L., A simple and efficient numerical algorithm to determine the orientation of the critical plane in multiaxial fatigue problems. International Journal of Fatigue, 32 (2010) 1875–1883. http://doi.org/10.1016/j.ijfatigue.2010.05.004. [36] Sonsino, C. M., Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and stresses. International Journal of Fatigue, 17 (1995) 55–70. [37] Sonsino, C. M., Wiebesiek, J., Assessment of multiaxial spectrum loading of welded streel and aluminium joints by modified equivalent stress and gough-pollard algorithms. Darmstadt, Germany, (2007). [38] Backstrom, M., Multiaxial fatigue life assessment of welds based on nominal and hot spot stresses. Lappeenranta University of Technology, Lappeenranta, Finland, (2003). [39] Fricke, W., Recommended Hot Spot Analysis Procedure for Structural Details of FPSOs and Ships Based on Round- Robin FE Analyses. In 11th Internation Offshore and Polar Engineering Conference. Stavanger, Norway, (2001). [40] Maddox, S. J., Recommended Hot-Spot Stress Design S-N Curves for Fatigue Assessment of FPSOs. In 11th International Offshore and Polar Engineering Conference. Stavanger, Norway, (2001). [41] Maddox, S. J., Hot-Spot Stress Design Curves for Fatigue Assessment of Welded Structures. International Journal of Offshore and Polar Engineering, 12(2) (2002) 1053–5381. [42] Kyuba, H., Dong, P. Equilibrium-equivalent structural stress approach to fatigue analysis of a rectangular hollow section joint. International Journal of Fatigue, 27 (2005) 85–94. http://doi.org/10.1016/j.ijfatigue.2004.05.008. [43] Selvakumar, P., Hong, J. K., Robust Mesh Insensitive Structural Stress Method for Fatigue Analysis of Welded Structures. Procedia Engineering, 55 (2013) 374–379. http://doi.org/10.1016/j.proeng.2013.03.268. [44] Tveiten, B. W., Moan, T., Determination of structural stress for fatigue assessment of welded aluminum ship details. Marine Structures, 13 (2000) 189–212. http://doi.org/10.1016/S0951-8339 (00)00022-8. [45] Pedersen, M. M., Multiaxial fatigue assessment of welded joints using the notch stress approach. International Journal of Fatigue, 83 (2016) 269–279. http://doi.org/10.1016/j.ijfatigue.2015.10.021. [46] Radaj, D., Sonsino, C. M., Fricke, W., Recent developments in local concepts of fatigue assessment of welded joints. International Journal of Fatigue, 31 (2008) 2–11. http://doi.org/10.1016/j.ijfatigue.2008.05.019. [47] Sonsino, C. M., Fricke, W., De Bruyne, F., Hoppe, A., Ahmadi, A., Zhang, G., Notch stress concepts for the fatigue assessment of welded joints - Background and applications. International Journal of Fatigue, 34 (2012) 2–16. http://doi.org/10.1016/j.ijfatigue.2010.04.011. [48] Exel, N., Sonsino, C. M., Multiaxial fatigue evaluation of laserbeam-welded magnesium joints according to IIW- fatigue design recommendations. Welding in the World, 58(4) (2014) 539–545. http://doi.org/10.1007/s40194-014-0139-6. [49] Anes, V., Reis, L., Li, B., De Freitas, M., New cycle counting method for multiaxial fatigue. International Journal of Fatigue, (2014). http://doi.org/10.1016/j.ijfatigue.2014.02.010. [50] Anes, V., Reis, L., Li, B., Fonte, M., De Freitas, M., New approach for analysis of complex multiaxial loading paths. International Journal of Fatigue, 62 (2014) 21–33. http://doi.org/10.1016/j.ijfatigue.2013.05.004 [51] Mamiya, E. N., Castro, F. C., Malcher, L., Araújo, J. A., Multiaxial fatigue life estimation based on combined deviatoric strain amplitudes. International Journal of Fatigue, 67 (2014) 117–122. http://doi.org/10.1016/j.ijfatigue.2013.11.002. [52] Dong, P., Wei, Z., Hong, J. K., A path-dependent cycle counting method for variable-amplitude multi-axial loading. International Journal of Fatigue, 32 (2009) 720–734. http://doi.org/10.1016/j.ijfatigue.2009.10.010.

RkJQdWJsaXNoZXIy MjM0NDE=