Issue 37

P.S. van Lieshout et al., Frattura ed Integrità Strutturale, 37 (2016) 173-192; DOI: 10.3221/IGF-ESIS.37.24 190 [5] Meggiolaro, M. A., Tupiassú, J., De Castro, P., An improved multiaxial rainflow algorithm for non-proportional stress or strain histories - Part II: The Modified Wang-Brown method. International Journal of Fatigue, (2011). http://doi.org/10.1016/j.ijfatigue.2011.10.012. [6] Wei, Z., Dong, P., Batra, R. C., Nikbin, K., Analysis of multi-axial test data using a path-dependent effective stress/strain definition. In ASME 2013 Pressure Vessels and Piping Conference. Paris, France: PVP2013-97630, (2013). [7] Carpinteri, A., Spagnoli, A., Vantadori, S., Multiaxial fatigue life estimation in welded joints using the critical plane approach. International Journal of Fatigue, 31 (2008) 188–196. http://doi.org/10.1016/j.ijfatigue.2008.03.024. [8] Li, J., Zhang, Z.-P., Sun, Q., Li, C.-W., Multiaxial fatigue life prediction for various metallic materials based on the critical plane approach. International Journal of Fatigue, 33 (2011) 90–101. http://doi.org/10.1016/j.ijfatigue.2010.07.003. [9] Susmel, L., Tovo, R., On the use of nominal stresses to predict the fatigue strength of welded joints under biaxial cyclic loading. Fatigue Fracture of Engineering Materials Structures, 27 (2004) 1005–1024. http://doi.org/10.1111/j.1460-2695.2004.00814.x. [10] Cristofori, A., Susmel, L., Tovo, R., A stress invariant based criterion to estimate fatigue damage under multiaxial loading. International Journal of Fatigue, 30 (2007) 1646–1658. http://doi.org/10.1016/j.ijfatigue.2007.11.006. [11] Macha, E., Sonsino, C. M., Energy criteria of multiaxial fatigue failure. Fatigue and Fracture of Engineering Materials and Structures, 22 (1999) 1053–1070. [12] Niesłony, A., Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method. Journal of Theoretical and Applied Mechanics, 48(1) (2010) 233–254. [13] Wang, Y.-Y., Yao, W.-X. Evaluation and comparison of several multiaxial fatigue criteria. International Journal of Fatigue, 26 (2004) 17–25. http://doi.org/10.1016/S0142-1123( 03)00110-5. [14] Besten, J. H. den. A total stress concept. Delft University of Technology, (2015). [15] Suresh, S., Fatigue of materials (Second edi). Cambridge, UK: Cambridge University Press, (1998). [16] Callens, A., Bignonnet, Fatigue design of welded bicycle frames using a multiaxial criterion. Procedia Engineering, 34 (2012) 640–645. http://doi.org/10.1016/j.proeng.2012.04.109. [17] Dang Van, K., On a unified fatigue modelling for structural analysis based on the shakedown concept. Mecamix, X- Tech. Paris, France, (2014). [18] Lieshout, P. S. van, Besten, J. H. den, Kaminski, M. L., Validation of the corrected Dang Van multiaxial fatigue criterion applied to turret bearings of FPSO offloading buoys. Ships and Offshore Structures, to be publ., (2016). [19] Radaj, D., Sonsino, C. M., Fricke, W., Fatigue assessment of welded joints by local approaches. Woodhead Publishing Limited, 53 (2006). http://doi.org/10.1017/CBO9781107415324.004. [20] Susmel, L., Lazzarin, P. A bi-parametric Wöhler curve for high cycle multiaxial fatigue assessment. Fatigue and Fracture of Engineering Materials and Structures, 25(1) (2002) 63–78. http://doi.org/10.1046/j.1460-2695.2002.00462.x [21] DNV-GL.,Fatigue design of offshore steel structures. Recommended Practice DNVGL-RP-0005:2014-06, 1–126. (2005). Retrieved from ftp://128.84.241.91/tmp/MSE-4020/Fatigue-Design-Offshore.pdf [22] Eurocode 3. Design of steel structures - Part 1-9: Fatigue. (2005). [23] Hobbacher, A., Recomendations for Fatigue Design of Welded Joints and Components. IIW document IIW-1823-07 ex XIII-2151r4-07/XV-1254r4-07. Paris, France, (2008). [24] Farajian, M., Nitschke-Pagel, T., Boin, M., Wimpory, R. C., Relaxation of welding residual stresses in tubular joints under multiaxial loading. The Tenth International Conference on Multiaxial Fatigue Fracture (ICMFF10), (2013). [25] Backstrom, M., Marquis, G., Interaction equations for multiaxial fatigue assessment of welded structures. Fatigue and Fracture of Engineering Materials and Structures, 27 (2004) 991–1003. http://doi.org/10.1111/j.1460-2695.2004.00811.x. [26] Gaier, C., Dannbauer, H., An Efficient Critical Plane Method for Ductile , Semi- Ductile and Brittle Materials. In Oral reference: FT436. Elsevier Ltd. (2006). [27] Papadopoulos, I. V., Panoskaltsis, V. P., Gradient-Dependent Multiaxial High-Cycle Fatigue Criterion. Multiaxial Fatigue and Design, ESIS 21, Edited by A. Pineau, G. Caileetaud, and T. C. Lindley, (1996). [28] Gustafsson, J., Multi-axial fatigue in welded details-An investigation of existing design approaches. Chalmers University of Technology, (2007). [29] Wang, Y., Susmel, L., The Modified Manson–Coffin Curve Method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading. International Journal of Fatigue, 83 (2016) 135–149. http://doi.org/10.1016/j.ijfatigue.2015.10.005.

RkJQdWJsaXNoZXIy MjM0NDE=