numero25

V. Veselý et alii, Frattura ed Integrità Strutturale, 25 (2013) 69-78; DOI: 10.3221/IGF-ESIS.25.11 78 [26] Yang, Z. J., Chen, J. F., Holt, G. D., Efficient evaluation of stress intensity factors using virtual crack extension technique, Comp. Struct., 79(31) (2001) 2705–2715. [27] Linsbauer, H.N., Tschegg, E.K., Fracture energy determination of concrete with cube-shaped specimens, Zement und Beton, 31 (1986) 38–40. [28] Brühwiler, E., Wittmann, F.H., The wedge splitting test, a new method of performing stable fracture mechanics test, Engng. Fract. Mech., 35 (1990) 117–125. [29] Reinhardt, H.W., Xu, S., Crack extension resistance based on the cohesive force in concrete, Engng. Fract. Mech., 64 (1999) 563–587. [30] Xu, S., Reinhardt, H.W., Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part III: Compact tension specimens and wedge splitting specimens, Int. J. Fract., 98 (1999) 179–193. [31] Guinea, G.V., Elices, M., Planas, J., Stress intensity factors for wedge-splitting geometry, Int. J. Fract., 81 (1996) 113– 124. [32] Seitl, S., Veselý, V., Řoutil, L., Two-parameter fracture mechanical analysis of a near-crack-tip stress field in wedge splitting test specimens, Comp. Struct., 89 (2011) 1852–1858. [33] Seitl, S., Dymáček, P., Klusák, J., Řoutil, L., Veselý, V., Two-parameter fracture analysis of wedge splitting test specimen, in: B.H.V. Topping, L.F. Costa Neves, R.C. Barros (Eds.), Proc. of 12 th Int. Conf. on Civil, Structural and Environmental Engineering Computing, Funchal, Portugal, Civil-Comp Press, Stirlingshire, UK, pap. 192 (10 p.), 2009. doi:10.4203/ccp.91.192. [34] Seitl, S., Hutař, P., Veselý, V., Keršner, Z., T-stress values during fracture in wedge splitting test geometries: a numerical study, in: A. Brandt, J. Olek and I. H. Marshall (Eds.), Proc. of Int. Symp. Brittle Matrix Composites 9, Warsaw, IFTR and Woodhead Publ., 2009, 419–428. [35] ANSYS Users manual version 10.0, Swanson Analysis System, Inc., Houston, 2005.

RkJQdWJsaXNoZXIy MjM0NDE=