numero25

V. Veselý et alii, Frattura ed Integrità Strutturale, 25 (2013) 69-78; DOI: 10.3221/IGF-ESIS.25.11 77 R EFERENCES [1] Bažant, Z.P., Analysis of work-of-fracture method for measuring fracture energy of concrete, J. Engng. Mech. (ASCE), 122(2) (1996) 138–144. [2] Hu, X.-Z., Wittmann, F.H., Size effect on toughness induced by crack close to free surface, Engng. Fract. Mech., 65 (2000) 209–221. [3] Duan, K., Hu, X.-Z., Wittmann, F.H., Boundary effect on concrete fracture and non-constant fracture energy distribution, Engng. Fract. Mech., 70 (2003) 2257–2268. [4] Duan, K., Hu, X.-Z., Wittmann, F.H., Size effect on specific fracture energy of concrete, Engng. Fract. Mech., 74 (2007) 87–96. [5] Hu, X.-Z., Duan, K., Size effect: Influence of proximity of fracture process zone to specimen boundary, Engng. Fract. Mech., 74 (2007) 1093–1100. [6] Trunk, B., Wittmann, F. H., Influence of size on fracture energy of concrete, Mater. Struct., 34 (2001) 260–265. [7] Veselý, V., Frantík, P., Keršner, Z., Cracked volume specified work of fracture, in: B.H.V. Topping, L.F. Costa Neves, R.C. Barros (Eds.), Proc. of 12 th Int. Conf. on Civil, Structural and Environmental Engineering Computing, Funchal, Portugal, Civil-Comp Press, Stirlingshire, UK, (2009) n.194. doi:10.4203/ccp.91.194. [8] Veselý, V., Frantík, P., An application for the fracture characterization of quasi-brittle materials taking into account fracture process zone influence, submitted to Adv. Eng. Softw. (expected in 2013). [9] Veselý, V., Frantík, P., Reconstruction of a fracture process zone during tensile failure of quasi-brittle materials, Appl. Comp. Mech., 4 (2010) 237–250. [10] Veselý, V., Keršner, Z., Němeček, J., Frantík, P., Řoutil, L., Kucharczyková, B., Estimation of fracture process zone extent in cementitious composites, Chem. listy, 104 (2010) s382–s385, [11] Frantík, P., Veselý, V., Keršner, Z., Parallelization of lattice modelling for estimation of fracture process zone extent in cementitious composites. Adv. Eng. Softw. (2013), http://dx.doi.org/10.1016/j.advengsoft.2012.11.020 . [12] Veselý, V., Šestáková, L., Seitl, S., Influence of boundary conditions on higher order terms of near-crack-tip stress field in a WST specimen, Key Eng. Mat., 488–489 (2012) 399–402. [13] Veselý, V., Sobek, J., Šestáková, L., Seitl, S., Accurate description of near-crack-tip fields for the estimation of inelastic zone extent in quasi-brittle materials, Key Eng. Mat., 525–526 (2013) 529–532. [14] Šestáková, L., Veselý, V., Sobek, J., Frantík, P., Accuracy of approximation of stress field in cracked bodies for failure zone extent estimation. Accepted to conference FraMCoS-8, Toledo, Spain, 10–14 March 2013. [15] Ayatollahi, M.R, Nejati, M., An over-deterministic method for calculation of coefficients of crack tip asymptotic field from finite element analysis, Fatigue Fract. Engng. Mater. Struct., 34 (2010) 159–176. [16] Williams, M.L., On the stress distribution at the base of a stationary crack, J. Appl. Mech. (ASME), 24 (1957) 109– 114. [17] Berto, F., Lazzarin, P., Christopher, C.J., James, M.N., Characterization of crack tip stress fields, Forni di Sopra (UD), Italy, March 7–9, (2011) 88–95. [18] Guagliano, M., Sangirardi, M., Sciuccati, A., Zakeri, M., Multiparameter analysis of the stress field around a crack tip, Procedia Engineering, 10 (2011) 2931–2936. [19] Berto, F., Lazzarin, P., Multiparametric full-field representations of the in-plane stress fields ahead of cracked components under mixed mode loading, Int. J. Fatigue, 46 (2013) 16–26. [20] Leevers, P.S., Radon, J.C., Inherent stress biaxiality in various fracture specimen geometries, Int. J. Fract., 19 (1983) 311–325. [21] Knésl, Z., Bednář, K., Two-parameter fracture mechanics: determination of parameters and their values (in Czech), IPM AS CR, v. v. i., Brno, (1998). [22] Karihaloo, B.L., Xiao, Q.Z., Higher order terms of the crack tip asymptotic field for a wedge-splitting specimen Int. J. Fract., 112 (2001) 129–137. [23] Karihaloo, B.L., Abdalla, H., Xiao, Q.Z., Coefficients of the crack tip asymptotic field for wedge splitting specimen, Engng. Fract. Mech., 70 (2003) 2407–2420. [24] Yang, B., Ravi-Chandar, K., Evaluation of elastic T-stress by the stress difference method, Engng. Fract. Mech., 64 (1999) 589–605. [25] Tan, C.L., Wang, X., The use of quarter-point crack-tip elements for T-stress determination in boundary element method analysis, Engng. Fract. Mech., 70 (2003) 2247–2252.

RkJQdWJsaXNoZXIy MjM0NDE=