Issue 52

A. Ahmadi et alii, Frattura ed Integrità Strutturale, 52 (2020) 67-81; DOI: 10.3221/IGF-ESIS.52.06 81 [26] Miao, B., Zhang, W., Zhang, J. and Jin, D. (2009). Evaluation of railway vehicle car body fatigue life and durability using multi-disciplinary analysis method. International Journal of Vehicle Structures & Systems, 1(4), p.85. DOI: 10.4273/ijvss.1.4.05 [27] Suryavanshi, V. (2013). Estimation of Fatigue Damage of Passenger Commercial Vehicle for Road Load Inputs by Virtual Simulation (No. 2013-01-2781). SAE Technical Paper. DOI: doi.org/10.4271/2013-01-2781 [28] H. Hibbitt (2012). B. Karlsson, P. Sorensen, ABAQUS theory manual, version 6.12, Pawtucket, Rhode Island, USA. [29] International Association for Earthquake Engineering (1996). Regulations for Seismic Design-A World List, Tokyo, Japan. [30] International Association for Earthquake Engineering (2000). Regulations for Seismic Design-A World List, Supplement, Tokyo, Japan. [31] Roy, N. and Girard, A. (2005). Impact of residual modes in structural dynamics. In Spacecraft Structures, Materials and Mechanical Testing 2005 (Vol. 581). [32] Dong, P., Hong, J.K. and Cao, Z. (2001). A mesh-insensitive structural stress procedure for fatigue evaluation of welded structures. International Institute of Welding. [33] Dong, P. (2005). A robust structural stress method for fatigue analysis of offshore/marine structures. J. Offshore Mech. Arct. Eng., 127(1), pp.68-74. DOI: 10.1115/1.1854698 [34] Hong, J.K. (2013). Evaluation of weld root failure using Battelle structural stress method. Journal of Offshore Mechanics and Arctic Engineering, 135(2), p.021404. DOI: 10.1115/1.4007329 [35] Hong, J.K. and Forte, T.P. (2014), June. Fatigue evaluation procedures for multiaxial loading in welded structures using Battelle structural stress approach. In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, pp.V005T03A013-V005T03A013. American Society of Mechanical Engineers. DOI: 10.1115/omae2014-23459 [36] Cheng, M. and Sawa, N. (2016). Fatigue Life Prediction Method for Laser Screw Welds in Automotive Structures (No. 2016-01-0394). SAE Technical Paper. DOI: 10.4271/2016-01-0394 [37] Kepka, M. and Kepka Jr, M. (2018). Parametric calculations of fatigue life of critical part of trolleybus rear axle. Procedia engineering, 213, pp.227-238. DOI: j.proeng.2018.02.024 [38] Kang, H.T., Dong, P. and Hong, J.K., (2007). Fatigue analysis of spot welds using a mesh-insensitive structural stress approach. International Journal of fatigue, 29(8), pp.1546-1553. DOI: 10.1016/j.ijfatigue.2006.10.025 [39] Hong, J.K., (2011). The development of a simplified spot weld model for Battelle structural stress calculation. SAE International Journal of Materials and Manufacturing, 4(1), pp.602-612. DOI: 10.4271/2011-01-0479 [40] Dong, P., Hong, J.K. and De Jesus, A.M., (2007). Analysis of recent fatigue data using the structural stress procedure in ASME Div 2 rewrite. Journal of Pressure Vessel Technology, 129(3), pp.355-362. DOI: 10.1115/1.2748818 [41] Boardman, B. (1990). Fatigue resistance of steels. ASM International, Metals Handbook. Tenth Edition, 1, pp.673- 688. DOI: 10.31399/asm.hb.v01.a0001038 [42] Shariyat, M. and Khodabandeh, T., (2013). Comparison of the stress distributions of liquid gas road tankers with various configurations during braking, cornering, and vertical bump maneuvers. International Journal of Automotive Technology, 14(2), pp.301-311. DOI: 10.1007/s12239 − 013 − 0034 − y [43] Thien, U.K., Nagrani, R. and Chudda, I.S., (2009). Base Frame Design of Lightweight Vehicles (No. 2009-26-0071). SAE Technical Paper. DOI: 10.4271/2009-26-0071 [44] Gumpinger, J., Hahn, O., Korte, M., Kudrnac, P., Singh, S. and Unger, B., (1997), September. Computer Simulated Estimation Of The Fatigue Behavior And Stiffness Of Spot Joints In Automotive Structures. In International Body Engineering Conference & Exposition (p. 1).

RkJQdWJsaXNoZXIy MjM0NDE=