Issue 52

C. Caselle et alii, Frattura ed Integrità Strutturale, 52 (2020) 247-255; DOI: 10.3221/IGF-ESIS.52.19 255 [8] Caselle, C., Bonetto, S., Vagnon, F. and Costanzo, D. (2019). Dependence of macro mechanical behaviour of gypsum on micro-scale grain-size distribution, Géotechnique Lett. 9(4), pp.290-298. DOI: 10.1680/jgele.18.00206. [9] Caselle, C., Penone, A. and Bonetto, S. (2018). Preliminary mechanical characterisation of gypsum rock using UCS and Point Load Test correlation, Geoing. Ambient. E Mineraria. 153(1), pp. 60–67. [10] Caselle, C., Bonetto, S., Colombero, C. and Comina, C. (2019). Mechanical properties of microcrystalline branching selenite gypsum samples and influence of constituting factors, J. Rock Mech. Geotech. Eng. 11(2), pp. 228–241. DOI: 10.1016/j.jrmge.2018.09.003. [11] Caselle, C., Bonetto, S., Vagnon, F. and Costanzo, D. (2018). Preliminary results of gypsum mechanical characterization, in: Geomech. Geodyn. Rock Masses, pp. 1123–1128. [12] Craker, W.E. and Schiller, K.K. (1962). Plastic deformation of gypsum, Nature. 193, pp. 672–673. DOI: 10.1038/193672a0. [13] de Meer, S. and Spiers, C.J. (1997). Uniaxial compaction creep of wet gypsum aggregates, J. Geophys. Res. Solid Earth. 102 (B1), pp. 875–891. DOI: 10.1029/96JB02481. [14] Hoxha, D., Homand, F. and Auvray, C. (2006). Deformation of natural gypsum rock: Mechanisms and questions, Eng. Geol. 86(1), pp. 1–17. DOI: 10.1016/j.enggeo.2006.04.002. [15] Bobet, A. and Einstein, H.H. (1998). Fracture coalescence in rock-type materials under uniaxial and biaxial compression, Int. J. Rock Mech. Min. Sci. 35(7), pp. 863–888. DOI: 10.1016/S0148-9062(98)00005-9. [16] Caselle, C., Umili, G., Bonetto, S., Costanzo, D. and Ferrero A.M. (2020). Evolution of Local Strains Under Uniaxial Compression in an Anisotropic Gypsum Sample, in: Geotechnical Research for Land Protection and Development, Springer International Publishing, pp. 454–461. [17] Caselle, C., Umili, G., Bonetto, S., Ferrero, A.M. (2019). Application of DIC analysis method to the study of failure initiation in gypsum rocks, Géotechnique Lett. 9(1) pp. 35–45. DOI: 10.1680/jgele.18.00156. [18] Sagong, M. and Bobet, A. (2002). Coalescence of multiple flaws in a rock-model material in uniaxial compression, Int. J. Rock Mech. Min. Sci. 39(2) pp. 229–241. DOI: 10.1016/S1365-1609(02)00027-8. [19] Wong, L.N.Y. and Einstein, H.H. (2009) Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation, Rock Mech. Rock Eng. 42(3) pp. 475–511. DOI: 10.1007/s00603-008-0002-4. [20] Zucali, M., Barberini, V., Chateigner, D., Ouladdiaf, B. and Lutterotti, L. (2010). Brittle plus plastic deformation of gypsum aggregates experimentally deformed in torsion to high strains: Quantitative microstructural and texture analysis from optical and diffraction data, Geol. Soc. Lond. Spec. Publ. 332, pp. 79-98. DOI: 10.1144/SP332.6. [21] Brantut, N., Schubnel, A. and Guéguen, Y. (2011). Damage and rupture dynamics at the brittle-ductile transition: The case of gypsum, J. Geophys. Res. Solid Earth. 116(B1). DOI: 10.1029/2010JB007675. [22] CIESM. (2008). The Messinian Salinity Crisis from mega-deposits to microbiology - A consensus report, in: N° 33 CIESM Workshop Monogr. CIESM Publ. Monaco. [23] Lugli, S., Manzi, V., Roveri, M. and Schreiber, C.B. (2010). The Primary Lower Gypsum in the Mediterranean: A new facies interpretation for the first stage of the Messinian salinity crisis, Palaeogeogr. Palaeoclimatol. Palaeoecol. 297(1), pp. 83–99. DOI: 10.1016/j.palaeo.2010.07.017. [24] Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F.J., Bertini, A., Camerlenghi, A., De Lange, G., Govers, R., Hilgen, F.J., Hübscher, C., Meijer, P.T. and Stoica, M. (2014). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences, Mar. Geol. 352, pp. 25–58. DOI: 10.1016/j.margeo.2014.02.002. [25] Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., Gennari, R., Irace, A., Lozar, F., Lugli, S., Manzi, V., Natalicchio, M., Roveri, M. and Violanti, D. (2011). The record of the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy): The Alba section revisited, Palaeogeogr. Palaeoclimatol. Palaeoecol. 310(3-4), pp. 238–255. DOI: 10.1016/j.palaeo.2011.07.017. [26] Irace, A., Dela Pierre, F. and Clari P. (2005). «Normal» and «chaotic» deposits in the Messinian Gessoso-solfifera Fm. at the north-eastern border of the Langhe domain (Tertiary Piedmont basin), Boll. Della Soc. Geol. Ital. 4, pp. 77–85. [27] Blaber, J., Adair, B. and Antoniou, A. (2015). Ncorr: Open-Source 2D Digital Image Correlation Matlab Software, Exp. Mech. 55(6), pp. 1105–1122. DOI: 10.1007/s11340-015-0009-1.

RkJQdWJsaXNoZXIy MjM0NDE=