Issue 52

N. Hebbar et alii, Frattura ed Integrità Strutturale, 52 (2020) 230-246; DOI: 10.3221/IGF-ESIS.52.18 246 [46] Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A., Tounsi, A. (2016). Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position, J Braz. Soc. Mech. Sci. Eng. 38, pp. 265–275. DOI: 10.1007/s40430-015-0354-0. [47] Akba ş , Ş .D. (2015). Wave propagation of a functionally graded beam in thermal environments, Steel Compos. Struct. 19(6), pp. 1421-1447. [48] Akba ş , Ş .D. (2016). Forced vibration responses of functionally graded viscoelastic beams under thermal environment, International Journal of Innovative Research in Science, Engineering and Technology. 5(12), pp. 36 – 46. DOI: 10.1142/S1758825117501009. [49] Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. (2017b). A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams, Structural Engineering and Mechanics. 62(6), pp. 695 - 702. DOI: 10.12989/SEM.2017.62.6.695. [50] Li, L., Tang, H. and Hu, Y. (2018). The effect of thickness on the mechanics of nanobeams. International Journal of Engineering Science. 123, pp. 81-91. DOI: 10.1016/j.ijengsci.2017.11.021. [51] Sayyad, A. S., & Ghugal, Y. M. (2017b). A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates. International Journal of Applied Mechanics. 9(1), pp. 1–36. DOI: 10.1142/S1758825117500077. [52] Aldousari, S.M. (2017). Bending analysis of different material distributions of functionally graded beam, Appl. Phys. A. 123, pp. 296. [53] Bouafia, K., Kaci, A., Houari, M. S. A., Benzair, A., Tounsi, A. (2017). A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams, Smart Structures and Systems. 19(2), pp. 115-126. DOI: 10.12989/sss.2017.19.2.115 [54] Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A., Mahmoud, S.R. (2017). A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams, Struct. Eng.Mech. 64(2), pp. 145-153. DOI: 10.1016/j.ast.2014.02.001. [55] Fouda Noha, Tawfik El-midany, A. M. Sadoun, (2017), Bending, Buckling and Vibration of a Functionally Graded Porous Beam Using Finite Elements, Journal of applied and computational mechanics. 3, pp. 274-282. DOI: 10.22055/JACM.2017.21924.1121. [56] Zaoui F. Zohra, Hanifi H. A. Lemya, Younsi Abderahman, Meradjah Mustapha, Tounsi Abdelouahed, Ouinas Djamel, (2017). Free vibration analysis of functionally graded beams using a higher-order shear deformation theory, mathematical modelling of engineering problems. 1(1), pp.7-12. DOI: 10.18280/mmep.040102. [57] Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. (2017). Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory, Smart Structures Systems. 20(3), pp. 369-383. DOI: 10.12989/sss.2017.20.3.369. [58] Sayyad, A. S., & Ghugal, Y. M. (2018). Bending, buckling and free vibration responses of hyperbolic shear deformation FGM beams. Mechanics of advanced composite structures. 5, pp. 13-24. DOI: 10.22075/MACS.2018.12214.1117. [59]Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. (2018). Post-buckling analysis of shear- deformable composite beams using a novel simple two-unknown beam theory, Structural Engineering and Mechanics.65(5), pp. 621-631. DOI: 10.12989/sem.2018.65.5.621. [60]Dragan Cukanovic, Aleksandar Radakovic´, Gordana Bogdanovic´, Milivoje Milanovic´, Halit Redžovi´c and Danilo Dragovi´c. (2018). New Shape Function for the Bending Analysis of Functionally Graded Plate, Materials. 11, pp. 2381. DOI: 10.3390/ma11122381. [61] Bouremana, M, Houari, M.S.A., Tounsi, A.,Kaci, A. and Adda Bedia, E.A. (2013), A new first shear deformation beam theory based on neutral surface position for functionally graded beams, Steel Compos. Struct., 15(5), pp. 467- 479. DOI: 10.12989/scs.2013.15.5.467. [62]Ould, L.L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), An efficient shear deformation beamtheory based on neutral surface position for bending and free vibration of functionally graded beams, Mech.Bas.Des.Struct., 41(4), pp. 421-433. DOI: 10.1080/15397734.2013.763713. [63] Ş im ş ek, M.and Yurtcu, H.H. (2013), Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory, Compos. Struct., 97, pp. 378-386. DOI: 10.1016/j.compstruct.2012.10.038 [64] Mantari JL, Granados EV. (2016). An original FSDT to study advanced composites on elastic foundation. Thin- Walled Structures;107: 80e9. DOI: 10.1016/j.tws.2016.05.024 . [65] Reddy JN. (2002). Energy principles and variational methods in applied mechanics. John Wiley & Sons Inc.

RkJQdWJsaXNoZXIy MjM0NDE=