Issue 52

A. Drai et alii, Frattura ed Integrità Strutturale, 52 (2020) 181-196; DOI: 10.3221/IGF-ESIS.52.15 196 [29] Wang, W., Song, Y., Gao, D., Yoon, E.Y., Lee, D.J., Lee, C. and Kim, H.S. (2013). Analysis of stress states in compression stage of high pressure torsion using slab analysis method and finite element method, Met. Mater. Int., 19, pp. 1021-1027. DOI: 10.1007/s12540-013-5014-2. [30] Edalati, K., Miresmaeili, R., Horita, Z., Kanayam, H., and Pippan, R. (2011). Significance of temperature increase in processing by high-pressure torsion, Mater. Sci. Eng. A, 528, pp. 7301–7305. DOI: 10.1016/j.msea.2011.06.031. [31] Pereira, P.H.R., Figueiredo, R.B., Huang, Y., Cetlin, P.R., and Langdon, T.G. (2014). Modeling the temperature rise in high-pressure torsion, Mater. Sci. Eng. A, 593, pp. 185-188. DOI: 10.1016/j.msea.2013.11.015. [32] Kamrani, M., Levitas, V.I., and Feng, B. (2017). FEM simulation of large deformation of copper in the quasi-constrain high pressure-torsion setup, Mater. Sci. Eng. A, 705, pp. 219–230. DOI: 10.1016/j.msea.2017.08.078. [33] Kulagin, R., Zhao, Y., Beygelzimer, Y., Toth, L.S. and Shtern, M. (2017). Modeling strain and density distributions during high-pressure torsion of pre-compacted powder materials, Mater. Res. Lett. 5, pp. 179–186. DOI: 10.1080/21663831.2016.1241318. [34] Lee, D.J. and Kim, H.S. (2014). Finite element analysis for the geometry effect on strain inhomogeneity during high pressure torsion, J. Mater. Sci., 49, pp. 6620-6628. DOI: 10.1007/s10853-014-8283-3. [35] Belayachi, N., Benseddiq, N. and Nait-Abdelaziz, M. (2008). Behavior of the heterogeneous glassy polymers: Computational modeling and experimental approach, Compos. Sci. Technol. 68, pp. 367–375. DOI: 10.1016/j.compscitech.2007.07.002 [36] Perzyna, P. (1985). On Constitutive Modelling of Dissipative Solids for Plastic Flow, Instability and Fracture. In: A. Sawczuk (Eds), (1985), Plasticity Today-Modelling, Methods and Applications, pp. 657-679. [37] Perzyna, P. (1966). Fundamental Problems in Viscoplasticity, In: Advances in Applied Mechanics, Academic press in New York., 9, pp. 243-377. DOI: 10.1016/S0065-2156(08)70009-7. [38] Perzyna, P., and Pecherski, R. (1983). Modified theory of viscoplasticity. Physical foundations and identification of material functions for advanced strains, Arch. Mech., 35, pp. 423-436. [39] Peric, D., Owen, D.R.J. and Honnor, M.E. (1992). A model for finite strain elasto-plasticity based on logarithmic strains: Computational Issues. Computer methods in applied mechanics and engineering, 94, pp. 35-61. DOI: 10.1016/0045-7825(92)90156-E. [40] Sluis, O.V.D., Schreurs, P.J.G, Brekelmans, W.A.M. and Meijer, H.E.H. (2000). Overall behavior of heterogeneous elastoviscoplastic materials: effect of microstructural modeling. Mech. Mat., 32, pp. 449-462. DOI: 10.1016/S0167-6636(00)00019-3. [41] Sluis, O.V.D., Schreurs, P.J., and Meijer, H.E.H. (2001). Homogenisation of structured elastoviscoplastic solids at finite strains, Mech. Mat., 33, pp. 499-522. DOI: 10.1016/S0167-6636(01)00066-7. [42] Draï, A. and Aour, B. (2017). Analysis of the temperature effect on the plastic strain of polymers during high pressure torsion (HPT) process, ICONTES2017: International Conference on Technology, Engineering and Science, October 26 - 29, 2017 Antalya/Turkey, The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 1, pp. 40-51.

RkJQdWJsaXNoZXIy MjM0NDE=