Issue 52

A. Laureys et alii, Frattura ed Integrità Strutturale, 52 (2020) 113-127; DOI: 10.3221/IGF-ESIS.52.10 127 [39] Laureys, A., Claeys, L., De Seranno, T., Depover, T., Van den Eeckhout, E., Petrov, R., Verbeken, K. (2018). The role of titanium and vanadium based precipitates on hydrogen induced degradation of ferritic materials, Mater. Charact., 144, pp. 22-34. DOI: 10.1016/j.matchar.2018.06.030. [40] Laureys, A., Pinson, M., Depover, T., Petrov, R., Verbeken, K. (2019). EBSD characterization of hydrogen induced blisters and internal cracks in TRIP-assisted steel, Mater. Charact., In press, corrected proof. DOI: 10.1016/j.matchar.2019.110029. [41] Pérez Escobar, D., Depover, T., Duprez, L., Verbeken, K., Verhaege, M. (2012). Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel, Acta Mater., 60, pp. 2593-2605. DOI: 10.1016/j.actamat.2012.01.026. [42] Mostafapour, A., Ebrahimpour, A., Saied, T. (2016). Identification of retained austenite, ferrite, bainite and martensite in the microstructure of TRIP steel, Int. J. Iron Steel Soc. Iran, 13, pp. 1-6. [43] Balachandran, G. (2018). Challenges in special steel making, IOP Conf. Series: Materials Science and Engineering, 314, pp. 012016. DOI: 10.1088/1757-899X/314/1/012016. [44] Vorob’ev, N. I., Mirzaev, D. A., Tokovoi, O. K., Yakovleva, I. L., Fominykh, E. A. (2006). Sulfides in Forgings of 40KhGM Structural Steel, Russian Metallurgy (Metally), 2006, pp. 119-125. DOI: 10.1134/S0036029506020030. [45] Doig, P. and Jones, G.T. (1977). A Model for the Initiation of Hydrogen Embrittlement Cracking at Notches in Gaseous Hydrogen Environments, Met. Trans. A, 8, pp. 1993-1998. DOI: https://doi.org/10.1007/BF02646573. [46] Huang, F., Li, X.G., Liu, J., Qu, Y.M., Ji, J., Du, C.W. (2011). Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steels, J. Mater. Sci., 46, pp. 715-722. DOI: https://doi.org/10.1007/s10853-010-4799-3. [47] Dong, C.F., Xiao, K., Liu, Z.Y., Yang, W.J., Li, X.G. (2010). Hydrogen induced cracking of X80 pipeline steels, Int. J. Min. Mater. Sci., 17, pp. 579-586. DOI: 10.1007/s12613-010-0360-2. [48] Kim, W.K., Koh, S.U., Yang, B.Y., Kim, K. Y. (2008). Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels, Coros. Sci., 50, pp. 3336-3342. DOI: 10.1016/j.corsci.2008.09.030. [49] Koyama, M., Tasan, C.C., Akiyama, E., Tsuzaki, K., Raabe, D. (2014). Hydrogen-assisted decohesion and localized plasticity in dual-phase steel, Acta Mater., 70, pp. 174-187. DOI: 10.1016/j.actamat.2014.01.048. [50] Chan, S. (1999). Hydrogen trapping ability of steels with different microstructures, J. Chin. Inst. Eng., 22, pp. 43-53. DOI: 10.1080/02533839.1999.9670440. [51] Novak, P., Yuan, R., Somerday, B., Sofronis, P., Ritchie, R. (2010). A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel, J. Mech. Phys. Solids, 58, pp. 206-226. DOI: 10.1016/j.jmps.2009.10.005. [52] Mirzayev, D. A., Fominykh, E. A., Tokovoi, O. K., Vorob’ev, N. I., Shaburov, D. V., Yakovleva, I. L. (2007). Scanning electron microscopy of the flake structure in the forgings of structural alloy steel containing 0.4% carbon, Phys. Met. Metall., 103, pp. 292-298. DOI: 10.1134/S0031918X07030106. [53] Pérez Escobar, D., Depover, T., Wallaert, E., Duprez, L., Verhaege, M., Verbeken, K. (2012). Thermal desorption spectroscopy study of the interaction between hydrogen and different microstructural constituents in lab cast Fe-C alloys, Corros. Sci., 65, pp. 199-208. DOI: 10.1016/j.corsci.2012.08.017.

RkJQdWJsaXNoZXIy MjM0NDE=