Issue 37

F. Berto et alii, Frattura ed Integrità Strutturale, 37 (2017) 69-79; DOI: 10.3221/IGF-ESIS.37.10 79 [18] Yu, H.C., Tanaka, K., Akiniwa, Y., Estimation of torsional fatigue strength of medium carbon steel bars with circumferential crack by the cyclic resistance-curve method, Fatigue Fract. Eng. Mater. 21 (1998) 1067-1076. [19] Tanaka, K., Akiniwa, Y., Yu, H., The propagation of a circumferential fatigue crack in medium-carbon steel bars under combined torsional and axial loadings, In: Mixed-Mode Crack Behaviour, ASTM 1359 (eds Miller, K.J., McDowell, D.L.), West Conshohocked, PA, (1999) 295-311. [20] Pippan, R., Zelger, C., Gach, E., Bichler, C., Weinhandl, H., On the mechanism of fatigue crack propagation in ductile metallic materials, Fatigue Fract. Engng. Mat. Struct. 34 (2011) 1-16. [21] Christopher, C.J., James, M.N., Patterson, E.A., Tee, K.F., Towards a new model of crack tip stress fields, Int. J. Fracture, 148 (2007) 361–371. [22] Christopher, C.J., James, M.N., Patterson, E.A., Tee, K.F., A quantitative evaluation of fatigue crack shielding forces using photoelasticity, Eng. Fract. Mech. 75 (2008) 4190-4199. [23] Berto, F., Lazzarin, P., Yates, J., Multiaxial fatigue of V-notched steel specimens: a non-conventional application of the local energy method, Fatigue Fract. Engng. Mater. Struct. 34 (2011) 921–943. [24] Lazzarin, P., Sonsino, C.M., Zambardi, R., A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to-flange joints subjected to combined loadings, Fatigue Fract. Engng. Mater. Struct. 27 (2004) 127- 140. [25] Berto, F., Lazzarin, P., Fatigue strength of structural components under multi-axial loading in terms of local energy density averaged on a control volume, Int. J. Fatigue, 33 (2011) 1055-1065. [26] Berto, F. , Lazzarin, P., Marangon, C., Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading, Mater. Des., 54 (2014) 57-66. [27] Berto, F., Lazzarin, P., Tovo, R., Multiaxial fatigue strength of severely notched cast iron specimens, Int. J. Fatigue, 67 (2014) 15-27. [28] Berto, F., Campagnolo, A., Chebat, F., Cincera, M., Santini, M., Fatigue strength of steel rollers with failure occurring at the weld root based on the local strain energy values: modelling and fatigue assessment, Int. J. Fatigue. 82 (2016) 643–657. doi:10.1016/j.ijfatigue.2015.09.023. [29] Campagnolo, A., Berto, F., Leguillon, D., Fracture assessment of sharp V-notched components under Mode II loading: a comparison among some recent criteria, Theor. Appl. Fract. Mech. (2016) in press. doi:10.1016/j.tafmec.2016.02.001. [30] Berto, F., Lazzarin, P., Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches, Mater. Sci. Eng. R, 75 (2014) 1-48. [31] Berto, F., Campagnolo, A., Lazzarin, P., Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 503-517. [32] Berto, F., Campagnolo, A., Welo, T., Multiaxial fatigue strength of titanium alloys, Int. J. Fatigue, (to be submitted).

RkJQdWJsaXNoZXIy MjM0NDE=