Issue 35

S. Morita et alii, Frattura ed Integrità Strutturale, 35 (2016) 82-87; DOI: 10.3221/IGF-ESIS.35.10 86 polycrystalline magnesium alloy. Figure 5 : Fracture surfaces of fatigue tested (a) L-T specimen at  K = 6.8 MPa·m 1/2 , da/dN = 10 -7 m/cycle; (b) L-T specimen at  K = 13 MPa·m 1/2 , da/dN = 10 -6 m/cycle; (c) L-S specimen at  K = 6.4 MPa·m 1/2 , da/dN = 10 -8 m/cycle; (d) L-S specimen at  K = 13 MPa·m 1/2 , da/dN = 10 -6 m/cycle; (e) S-T specimen at  K = 6.2 MPa·m 1/2 , da/dN = 10 -7 m/cycle; and (f) S-T specimen at  K = 7 MPa·m 1/2 , da/dN = 10 -6 m/cycle. A CKNOWLEDGMENT his work was supported by JSPS KAKENHI Grant Numbers 24760578, 26820318. R EFERENCES [1] Ebert, T., Mordike, B.L., Magnesium Properties – applications – potential, Mater. Sci. Eng. A, 302 (2001) 37–45. [2] Yukutake, E., Kaneko, J., Sugamata, M., Anisotropy and Non-Uniformity in Plastic Behavior of AZ31 Magnesium Alloy Plates, Mater. Trans., 44 (2003) 452–457. [3] Somekawa, H., Maruyama, N., Hiromoto, S., Yamamoto, A., Mukai, T., Fatigue Behaviors and Microstructures in an Extruded Mg-Al-Zn Alloy, Mater. Trans., 49 (2008) 681–684. [4] Morita, S., Tanaka, S., Ohno, N., Kawakami, Y., Enjoji, T., Cyclic deformation and fatigue crack behavior of extruded AZ31B magnesium alloy, Mater. Sci. Forum, 638-642 (2010) 3056–3061. [5] Cáceres, C.H., Sumitomo, T., Veridt, M., Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading–unloading, Acta Mater., 51 (2003) 6211–6218. [6] Li, Y., Enoki, M., Evaluation of the Twinning Behavior of Polycrystalline Magnesium at Room Temperature by Acoustic Emission, Mater. Trans., 48 (2007) 1215–1220. T Crack growth direction (a) (b) (c) (d) (e) (f)

RkJQdWJsaXNoZXIy MjM0NDE=