Issue 35

Chahardehi et al, Frattura ed Integrità Strutturale, 35 (2016) 41-49; DOI: 10.3221/IGF-ESIS.35.05 48 [21] Bueckner, H.F., A novel principle for the computation of stress intensity factors, Zeitschrift fur Angewandte Mathematik und Mechanik, 50 (1970) 529-546. [22] Nelson, D.V., Effect of residual stress on fatigue crack propagation, in Residual Stress Effects in Fatigue, ASTM STP, 776 (1982) 172-184. [23] Jones, D.P., Hoppe, R.G., Hechmer, J.L., James, B.A., An experimental study on the effects of compressive stress on the fatigue crack growth of low-alloy steel, J. Pres. Vessel Tech., ASME, 116 (1994) 317-323. DOI:10.1115/1.2929595. [24] Libatskii, L.L., Determination of the length of slip bands in a plate with a circular hole, Soviet Materials Science, 2 (1966) 31-34. [25] Reid, C.N., Moffatt, J., Hermann, R., Fatigue under compressive loading and residual stress, Scripta Metallurgica, 22 (1988) 1743-1748. DOI: 10. 1016/S0036-9748(88)80276-X. [26] Reid, C.N., A method for mapping residual stress in a compact tension specimen, Scripta Metallurgica, 22 (1988) 451- 456. DOI:10.1016/0036-9748(88)90004-X. [27] Zhang, J., He, X.D., Sha, Y., Du, S.Y., The compressive stress effect on fatigue crack growth under tension compression loading, Int. J. Fatigue, 32 (2010) 361-367. DOI:10.1016/j.ijfatigue.2009.07.008. [28] Silva, F.S., Crack closure inadequacy at negative stress ratios, Int. J. Fatigue, 26 (2004) 241-252. DOI:10.1016/S0142- 1123(03)00162-2. [29] Iswanto, P.T., Nishida, S., Hattori, N., Effect of compressive mean stress and compressive residual stress on fatigue properties of stainless steel SUS304, Proc. 12th Int. Offshore and Polar Eng. Conf., Kitakyushu, Japan, (2002) 209- 213. [30] Chahardehi, A., Brennan, F.P., Steuwer, A., The effect of residual stresses arising from laser shock peening on fatigue crack growth, Eng. Frac. Mech., 77 (2010) 2033-2039. DOI:10.1016/j.engfracmech.2010.03.033. [31] Walker, K., The effect of stress ratio during crack propagation in cycle-loaded structures, J. Basic Eng., 89 (1967) 459- 464. [32] Kurihara, M., Katoh, A., Kawahara, M., Effects of stress ratio and step loading on fatigue crack propagation rate, Materials Research Series, Current Research on Fatigue Cracks, The Society of Materials Science, Japan, 1 (1985) 217- 233. [33] Eason, E.D., Gilman, J.D., Jones, D.P., Andrew, S.P., Technical basis for a revised fatigue crack growth rate reference curve for ferritic steels in air, J. Press. Vessel Tech., 114 (1992) 8086. DOI: 10.1115/1.2929016. [34] Forman, R.G., Kearney, V.E., Eagle, R.H., Numerical analysis of crack propagation in cyclic loaded structures, Transactions of ASME (Series D), 69 (1967) 459-463. [35] McEvily, A.J., Gregor, J., On the threshold for fatigue-crack growth, 4th Int. Conf. Frac, Waterloo, 2 (1977) 1293- 1298. [36] Bloom, J.M., An Approach to Account for Negative R-Ratio Effects in Fatigue Crack Growth Calculations for Pressure Vessels Based on Crack Closure Concepts, Trans. ASME, 116 (1994) 30-35. [37] Xiaoping Huang, Fatigue Crack Growth Rate Recommended in BS7910 and an Unique Crack Growth Rate Curve under Different Load Ratios, Proc. of PVP2007 – San Antonio (2007). [38] Vasudevan, A.K., Sadananda, K., Louat, N., Two critical stress intensities for threshold crack propagation, Scritpta Metallurgica, 28 (1993) 65-70. DOI: 10. 1016/09656-716X(93)90538-4. [39] McEvily, A.J., Minakawa, K., Crack Closure and Variable-Amplitude Fatigue Crack Growth, in Basic Questions in Fatigue, ASTM STP 924, Fong, J.T., Fields, R.J., American Society for Testing and Materials, I (1988) 357-376. [40] Minakawa, K., Levan, G., McEvily, A.J., The influence of load ratio on fatigue crack growth in 7090-t6 and in 9021- T4 p/m aluminium alloys, Metallurgical and Mat. Trans. A, 17 (1986) 1787-1795. [41] Silva, F.S., Fatigue crack propagation after overloading and underloading at negative stress ratios, Int. J. Fatigue, 29 (2007) 1757-1771. DOI:10.1016/j.ijfatigue.2007.03.012. [42] Stephens, R.I., Chen, D.K., Hom, B.W., Fatigue crack growth with negative stress ratio following single overloads in 2024-23 and 7057 T6 aluminum alloys, in Fatigue Crack Growth Under Spectrum Loads, ASTM STP 595 (1976), 27- 40. [43] Silva, F.S., The importance of compressive stresses on fatigue crack propagation rate, Int. J. Fatigue, 27 (2005) 1441- 1452. DOI:10.1016/j.ijfatigue.2005.07.003. [44] Allen, R.J., Booth, G.S., Julta, T., A review of fatigue crack growth characterisation by linear elastic fracture mechanics (LEFM). Part I – Principles and methods of data generation, Fatigue Frac. Eng. Mat. Struc., 11 (1988) 45-69. DOI: 10.1111/j.1460-2695.1988.tb01219.x

RkJQdWJsaXNoZXIy MjM0NDE=