Issue 35

L. C. H. Ricardo et alii, Frattura ed Integrità Strutturale, 35 (2016) 456-471; DOI: 10.3221/IGF-ESIS.35.52 470 [68] Sun, W., Sehitoglu, H., Residual stress fields during fatigue crack growth, Fatig. Fract. Eng. Mater. Struct., 15(2) (1992) 115–128. DOI: 10.1111/j.1460-2695.1992.tb00042.x. [69] Wu, J., Ellyin, F., A study of fatigue crack closure by elastic-plastic finite element analysis for constant-amplitude loading. Int. Journal of Fracture, 82 (1996) 43–65. DOI:10.1007/bf00017863. [70] Ellyin, F., Wu, J., A numerical investigation on the effect of an overload on fatigue crack opening and closure behavior, Fatig. Fract. Eng. Mater. Struct., 22 (1999) 835–847. DOI: 10.1046/j.1460-2695.1999.00223.x. [71] Wei, L. W., James, M. N., A study of fatigue crack closure in polycarbonate CT specimen., Eng. Fracture Mechanics, 66 (2000) 223–242. DOI: 10.1016/s0013-7944(00)00014-x. [72] Ricardo, L. C. H., Pimenta, P. M., Spinelli D., Andrade, A. H. P., Crack closure simulation by finite element method; In: Blom, A. F (Ed.), Fatigue 2002, Emas Publishing, Stockholm, Sweden, 4 (2002) 2863-2869. [73] Pommier S., Plane strain crack closure cyclic hardening, Eng. Fracture Mechanics, 69(3) (2002) 25–44. DOI:10.1016/s0013-7944(01)00061-3. [74] Ricardo, L. C. H., Modeling fatigue crack opening and closing phenomenon by finite element method, PhD Thesis, Department of Structures and Foundations, University of Sao Paulo (In portuguese), (2003). [75] Solanki, K., Daniewicz, S. R., Newman, Jr J. C., Finite element modelling of plasticity-induced crack closure with emphasis on geometry and mesh refinement effects. Eng. Fracture Mechanics, 70 (2003) 1475–89. DOI:10.1016/s0013-7944(02)00168-6. [76] Solanki, K., Daniewicz, S. R., Newman, Jr J. C., A new methodology for computing crack opening values from finite element analyses, Eng. Fracture Mechanics, 71 (2004) 1165–1175. DOI:10.1016/S0013-7944(03)00113-9. [77] Zhao, L. G., Tong, J., Byrne, J., The evolution of the stress–strain fields near a fatigue crack tip and plasticity-induced crack closure revisited, Fatig. Fract. Eng. Mater. Struct., 27(1) (2004) 19–29. DOI: 10.1111/j.1460-2695.2004.00716.x. [78] Gonzalez-Herrera, A., Zapatero, J., Influence of minimum element size to determine crack closure stress by finite element method, Eng. Fracture Mechanics, 72 (2005) 337–355. DOI:10.1016/j.engfracmech.2004.04.002. [79] Matos, P.F.P., Nowell D., On the accurate assessment of crack opening and closing stresses in plasticity-induced crack closure problems, Eng. Fracture Mechanics, 74(10) (2007) 1579–1601. DOI: 10.1016/j.engfracmech.2006.09.007. [80] Singh, K.D., Parry, M.R., Sinclair, I., Variable amplitude fatigue crack growth behavior – a short overview, Journal of Mechanical Science and Technology, 25(3) (2011) 663-673. DOI: 10.1007/s12206-011-132-6. [81] Lei, Y., Finite element crack closure analysis of a compact tension specimen, International Journal of Fatigue, 30 (2008) 21–31. DOI:10.1016/j.ijfatigue.2007.02.012. [82] ABAQUS, V6.3, Hibbitt, Karlsson & Sorensen, Inc., Providence, RI, (2002). [83] Ansys Inc, Ansys Version 6.0, USA, (2002). [84] ASTM, Standard test method for measurement of fatigue crack growth rates, E647–95a, (1995). DOI: 10.1520/E0647-15. [85] Machniewciz, T., Fatigue crack growth prediction models for metallic materials, part I: overview of prediction concepts, Fatigue Fract Engng Mater Struct, 36 (2012) 293–307. DOI: 10.1111/j.1460-2695.2012.01721.x. [86] Machniewciz, T., Fatigue crack growth prediction models for metallic materials, Part II: Part II: Strip yield model – choices and decisions, Fatigue Fract Engng Mater Struct, 36 (2012) 361–373. DOI: 10.1111/ffe.12009. [87] Harter, J. A. AFGROW users guide and technical manual. Air Force Research Laboratory, Report No. AFRL-VA- WP-TR-2006-XXXX, (2006). [88] Newman, J. C. FASTRAN II – A fatigue crack growth structural analysis program. NASA Technical Memorandum No. 104159. NASA Langley Research Center, Hampton, (1992). [89] Ten Hoeve, H. J., de Koning, A. U., Reference manual of the strip yield module in the NASGRO or ESACRACK software for the prediction of retarded crack growth and residual strength in metal materials, Report No. NLR TR 97012 L, NLR, Amsterdam, The Netherlands, (1997). [90] Heuler, P., Klätschke, H., Generation and use of standardized load spectra and load- times histories, International Journal of Fatigue, 27 (2005) 974-990. DOI: 10.16/j.ifatigue.2004.09.012. [91] Schütz, D., Lowack, H., de Jonge J. B., Schijve, J., A standardized load sequence for flight simulation tests on transport aircraft wing structures, LBF Report FB 106, NRL- Report TR 73, (1973). [92] Aircher, W., Branger, J., van DijK, G. M., Ertelt J., Hück, M., de Jonge J. B., Description of a fighter aircraft loading for standard for fatigue evaluation FALSTAFF, Common Report of FCW Emmen, LBF, NRL, IABG, (1976). [93] Schütz, D., Klätschke, H., Steinhilber, H., Heuler, P., Schütz, W., Standardized load Sequences for car wheel suspension components, car loading standard- CARLOS, Fraunhofer Institute für Betriebsfestigkeit (LBF), Darmstadt, Industrieanlagen – Betriebsgesellschaft MBH (IABG), Ottobrunn, LBF – Report No FB- 191, (1999).

RkJQdWJsaXNoZXIy MjM0NDE=