Issue 35

K. Slámečka et alii, Frattura ed Integrità Strutturale, 35 (2016) 322-329; DOI: 10.3221/IGF-ESIS.35.37 329 [9] Saucedo-Mora, L., Marrow, T.J., Method for the explicit insertion of microstructure in Cellular Automata Finite Element (CAFE) models based on an irregular tetrahedral Finite Element mesh: Application in a multi-scale Finite Element Microstructure MEshfree framework (FEMME), Finite Elem. Anal. Des., 105 (2015) 56-62. DOI: 10.1016/j.finel.2015.07.001 [10] Jahed, H., Shirazi, R., Loading and unloading behavior of a thermoplastic disc, Int. J. Press. Vessels Pip., 78 (2001) 637-645. [11] Białas, M., Finite element analysis of stress distribution in thermal barrier coatings, Surf. Coat. Technol., 202 (2008) 6002-6010. DOI: 10.1016/j.surfcoat.2008.06.178. [12] Slámečka, K., Čelko, L., Skalka, P., Pokluda, J., Němec, K., Juliš, M., Klakurková, L., Švejcar, J., Bending fatigue failure of atmospheric-plasma-sprayed CoNiCrAlY+YSZ thermal barrier coatings, Int. J. Fatigue, 70 (2015) 186-195. DOI: 10.1016/j.ijfatigue.2014.09.009. [13] Hill, R, On the micro-macro transition in constitutive analysis of elastoplastic response at finite strain. Math. Proc. Camb. Phil. Soc., 98 (1985) 579–585. DOI: 10.1017/S0305004100063787. [14] Bednarz, P., Herzog, R., Trunova, O., Steinbrech, R.W., Echsler, H., Quadakkers, W.J., Schubert, F., Singheiser, L., in D. Zhu, K. Plucknett (Eds.), Proceedings of 29th International Conference on Advanced Ceramics and Composites, Cocoa Beach, USA, (2005) 73-80. [15] Schlichting, K., Padture, N., Jordan, E., Gell., M., Failure modes in plasma-sprayed thermal barrier coatings. Mater. Sci. Eng., A342 (2003) 120-130. [16] Skalka, P., Slámečka, K., Pokluda, J., Čelko, L., Stability of plasma-sprayed thermal barrier coatings: the role of the waviness of the bond coat and the thickness of the thermally grown oxide layer, Surf. Coat. Technol., 274 (2015) 26- 36. DOI: 10.1016/j.surfcoat.2015.04.021.

RkJQdWJsaXNoZXIy MjM0NDE=