Issue 29

A. Infuso et alii, Frattura ed Integrità Strutturale, 29 (2014) 302-312; DOI: 10.3221/IGF-ESIS.29.26 312 1377. [2] Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., de Vree, J.H.P., Gradient enhanced damage for quasi-brittle materials, Int. J. Numer. Meth. Eng. , 39 (1996) 3391-3403. [3] Eringen, A.C., Kim, B.S., Relation between non-local elasticity and lattice dynamics, Crystal Lattice Defects , 7 (1977) 51-57. [4] Di Paola, M., Zingales, M., Long-range cohesive interactions of non-local continuum faced by fractional calculus, Int. J. Solids Struct., 45 (2008) 5642-5659. [5] Carpinteri, A., Cornetti, P., Sapora, A., Di Paola, M., Zingales, M., Fractional calculus in solid mechanics: Local vs Non-Local Approach, Physica Scripta, T136 (2009) 014003-014010. [6] Di Paola, M., Marino, F., Zingales, M., A generalized model of elastic foundation based on long-range interactions: Integral and fractional model, Int. J. Solids Struct, 46 (2009) 3124-3117. [7] Di Paola, M. Failla, G., Zingales, M., Physically based approach to the mechanics of strong non-local linear elasticity theory, J. Elasticity, 97 (2009) 103-130. [8] Bertoldi, K., Bigoni D., Drugan, W.J., Structural interfaces in linear elasticity. Part I: Nonlocality and gradient approximations, J. Mech. Phys. Solids, 55(1) (2007), 1-34. [9] Marfia, S., Sacco, E., Toti, J., A coupled interface-body nonlocal damage model for FRP strengthening detachment, Comput. Mech., 50(3) (2012), 335-351. [10] Giambanco, G., Fileccia Scimeni, G., Spada, A., The interphase finite element, Comput. Mech., 50(3) (2012), 353-366. [11] van Mier, J.G.M., Schlangen, E., Vervuurt, A., Lattice type fracture models for concrete, H.B. Mühlhaus (Ed.), Continuum Models for Materials with Microstructure, John Wiley & Sons (1995), 341-377. [12] Parisi, A., Caldarelli, G., Pietronero, L., Roughness of fracture surfaces, EPL, 52 (3), (2000), 304-310. [13] Nasdala, L., Kempe, A., Rolfes, R., The molecular dynamic finite element method (MDFEM), CMC 19 (2010) 57-104. [14] Tan, H., Jiang, L.Y., Huang, Y., Liu, B., Hwang, K.C., The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials, Compos. Sci. Technol. 67 (2007) 2941–2946. [15] Jiang, L.Y., Huang, Y., Jiang, H., Ravichandran, G., Gao, H., Hwang, K.C., Liu, B., A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force, J. Mech. Phys. Solids 54 (2006) 2436-2452. [16] van Mier, J.G.M., Multi-scale interaction potentials (F-r) for describing fracture of brittle disordered materials like cement and concrete, Int. J. Fract., 143 (2007) 41-78. [17] Paggi, M., Wriggers, P., A nonlocal cohesive zone model for finite thickness interfaces – Part I: mathematical formulation and validation with molecular dynamics, Comp. Mat. Sci., 50 (2011) 1625-1633. [18] Paggi, M., Wriggers, P., A nonlocal cohesive zone model for finite thickness interfaces – Part II: FE implementation and application to polycrystalline materials, Comp. Mat. Sci., 50 (2011) 1634-1643. [19] Zienkiewicz, O.C., Taylor, R.L., The Finite Element Method, 6th edition, Elsevier Oxford, 1 - 2, (2005).

RkJQdWJsaXNoZXIy MjM0NDE=