numero25

G. Qian et alii, Frattura ed Integrità Strutturale, 25 (2013) 7-14 ; DOI: 10.3221/IGF-ESIS.25.02 14 [4] Hong, Y., Zhao, A., Qian, G., Essential characteristic and influential factors for very-high-cycle fatigue behavior of metallic materials, Acta Metall. Sinica, 45 (2009) 769-780. [5] Zhou, C., Qian, G., Hong, Y., Fractography and crack initiation of very-high-cycle fatigue for a high carbon low alloy steel, Key Eng. Mater., 324-325 (2006) 1113-1116. [6] Qian, G., Hong, Y., Zhou, C., Investigation of high cycle and very-high-cycle fatigue behaviors for a structural steel with smooth and notched specimens, Eng. Failure Analysis, 17 (2010) 1517-1525. [7] Hong, Y., Zhao, A., Qian, G., Zhou, C., Fatigue strength and crack initiation mechanism of very-high-cycle fatigue for low alloy steels, Metall. Mater. Trans. A, 43 (2012) 2753-2762. [8] Qian, G., Zhou, C., Hong, Y., Experimental and theoretical investigation of environmental media on very-high-cycle fatigue behavior for a structural steel, Acta Mater., 59 (2011) 1321-1327. [9] Qian, G., Hong, Y., Effects of environmental media on high cycle and very-high-cycle fatigue behaviors of structural steel 40Cr, Acta Metall. Sinica, 45 (2009) 1359-1363. [10] Zhao, A., Xie, J., Sun, C., Lei, Z., Hong, Y., Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel, Int. J. Fatigue, 38 (2012) 46-56. [11] Zhao, A., Xie, J., Sun, C., Lei, Z., Hong, Y., Prediction of threshold value for FGA formation, Mater. Sci. Eng. A, 528 (2011) 6872-6877. [12] Sun, C., Xie, J., Zhao, A., Lei, Z., Hong, Y., A cumulative damage model for fatigue life estimation of high-strength steels in high-cycle and very-high-cycle fatigue regimes, Fatigue Fract. Eng. Mater. Struct., 35 (2012) 638–647. [13] Stepanskiy, L., Cumulative model of very high cycle fatigue, Fatigue Fract. Eng. Mater. Struct., 35 (2012) 513–522. [14] Sun, C., Lei, Z., Xie, J., Hong, Y., Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fish-eye mode failure, Int. J. Fatigue, 48 (2013)19–27. [15] Paolino, D., Chiandussi, G., Rossetto, M., A unified statistical model for S-N fatigue curves: probabilistic definition, Fatigue Fract. Eng. Mater. Struct., 36 (2013)187–201. [16] Huang, Z., Wang, Q., Wagner, D., Bathias, C., Chaboche, J., A rapid scatter prediction method for very high cycle fatigue, Fatigue Fract. Eng. Mater. Struct., 2013, DOI: 10.1111/ffe.12021. [17] Naito, T., Ueda, H., Kikuchi, M., Observation of fatigue fracture surface of carburized steel, Japan Soc. Mater. Sci., 32 (1983) 1162-1166. [18] Naito, T., Ueda, H., Kikuchi, M., Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface, Metall. Trans. A, 15A (1984) 1431-1436. [19] Tanaka, T., Mura, T., A dislocation model for fatigue crack initiation, J. Appl. Mech. Trans. ASME, 48 (1981) 97-103. [20] Yang, Z., Li, S., Zhang, J., Zhang, J., Li, G., Li, Z., Hui, W., Weng, Y., The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime, Acta Mater., 52 (2004) 5235-5241. [21] Venkataraman, G., Chung, Y., Nakasone, Y., Mura, T., Free energy formulation of fatigue crack initiation along persistent slip bands: calculation of S-N curves and crack depths, Acta Metall., 38 (1990) 31-40. [22] Suresh, S., Fatigue of Materials, Cambridge university press, Cambridge, (1998).

RkJQdWJsaXNoZXIy MjM0NDE=