Issue 18

V. Di Cocco et alii, Frattura ed Integrità Strutturale, 18 (2011) 45-53; DOI: 10.3221/IGF-ESIS.18.05 53  when loading up to an applied deformation  g =5%, corresponding to about  =400 MPa in the stress plateau of the  curve, a new phase, the martensitic one, is observed; as well known the stress plateau is attributed to the transition from initial cubic structure to the new structure;  when increasing the deformation up to  g =10%, corresponding to about  =800 MPa in the fully martensitic region of the  curve, the new structure is completely developed and the initial structure is not observed. The new structure is characterized by monoclinic cells with three cell parameters of about a=b=3.800 Å, c=2.600 Å and α=80°;  when unloading from  g =10% to  g =5% a different microstructure is observed with respect to the loading stage under the same value of applied deformation; this is a direct consequence of the marked hysteretic behavior of the material;  after complete unloading the specimen recovers his initial shape and it shows the same diffraction spectra of the alloy in its initial condition; this indicate that the initial micro-structure is completely recovered without the formation of stabilized martensite. R EFERENCES [1] K. Otsuka, X. Ren, Progress in Materials Science, (2005) 511. [2] Y. Liu, G. S. Tan, Intermetallics, (2000) 8. [3] V. Abbasi-Chianeh, J. Khalil-Allafi, Materials Science and Engineering A, 528, (2011), 5060-5065. [4] X Yan, J Van Humbeeck, Journal of Alloys and Compounds, 509, (2011), 1001-1006. [5] C.Urbina, S. De la flor, F.Ferrando, Materials Science and Engineering A, 501, (2009), 197-206. [6] Y. Liu, D. Favier, Acta Mater, (2000) 48. [7] K. C. Russel, Phase transformation, Ohio, ASM, (1969) 1219. [8] S. Miyazaki, M. Kimura, H. Horikawa, In: Advance materials, K. Otsuka, Y. Fukai, editors. 93, V/B, Elsevier (1994) 1097. [9] M. Pattabi, K. Ramakrishna, K.K. Mahesh, Materials Science and Engineering A, 448 (2007) 33. [10] A. Sato, E. Chishima, K. Soma, T. Mori, Acta Metall, 30 (1982) 1177. [11] K. Otsuka, K. Shimizu. Scripta Metall, 11 (1977) 757. [12] G.V. Kurdjumov, L. G.Khandros, Dokl Nauk, SSSR, 66 (1949) 211. [13] J. W., Christian, The theory of transformations in metals and alloys, Oxford: Pergamon Press, (1965) 815. [14] K. Bhattacharya, S. Conti, G. Zanzotto, J. Zimmer. Nature, 428 (2004) 55. [15] J. A. Krumhansl, G. R. Barsch, Proceedings of the International Conference on Martensitic Transformations '92, Ed. C. M. Wayman and J. Perkins (Monterey Institute of Advanced Studies, Carmel, 1993). [16] A. Nagasawa, Y. Morii, Mater Trans JIM, 34 (1993) 855. [17] A. Planes, Ll. Mañosa, Solid State Phys, 55 (2001) 159. [18] K. Otsuka, X. Ren, Intermetallics, 7 (1999) 511. [19] K. Otsuka, X. Ren, Mater Sci Eng A, 89 (1999) 273. [20] PowderCell 2.3—Pulverdiffraktogramme aus Einkristalldaten und Anpassung experimenteller Beugungsaufnahmen. Available at http://www.bam.de/de/service/publikationen/powder_cell.htm.

RkJQdWJsaXNoZXIy MjM0NDE=