Issue 50

N. Boychenko et alii, Frattura ed Integrità Strutturale, 50 (2019) 54-67; DOI: 10.3221/IGF-ESIS.50.07 67 [7] Papanikos, P., Meguid, S.A., Stjepanovic, Z. (1998). Three-dimensional nonlinear finite element analysis of dovetail joints in aeroengine discs, Finite Elements in Analysis and Design, 29, (3-4), pp. 173-186. DOI: 10.1016/S0168-874X(98)00008-0. [8] Shanyavsky, A.A., Stepanov, N.V. (1995). Fractographic analysis of fatigue crack growth in engine compressor disks of Ti-6Al-3Mo-2Cr titanium alloy, Fatigue & Fracture of Engineering & Material Structures, 18 (5), pp. 539-550. DOI: 10.1111/j.1460-2695.1995.tb01416.x. [9] Farrahi, G.H., Tirehdast, M., Masoumi Khalil Abad, E., Parsa, S., Motakefpoor, M. (2011). Failure analysis of a gas turbine compressor, Engineering Failure Analysis, 18 (1), pp. 474-484. DOI: 10.1016/j.engfailanal.2010.09.042. [10] Giannella, V., Citarella, R., Perrella, M., Shlyannikov. V. (2019). Surface crack modelling in an engine compressor disc, Theoretical and Applied Fracture Mechanics, in press. DOI: 10.1016/j.tafmec.2019.102279 . [11] Shaniavski, A.A. (2003). Tolerance fatigue failures of aircraft components. Synergetics in engineering applications. In: Monography, Ufa, pp. 803 [12] Shlyannikov, V.N., Tumanov, A.V. (2018). Force and deformation models of damage and fracture during creep, Physical mesomechanics, 3, pp.70-85. [13] Shlyannikov, V.N., Tumanov, A.V. (2018). Creep fracture resistance parameters determination based on stress and ductility damage models, Fatigue & Fracture of Engineering & Material Structures, 41 (10), pp. 2110-2129. DOI: 10.1111/ffe.12766. [14] ANSYS. Theory Reference. 001242. Eleventh Edition. (1999). SAS IP Inc. [15] Shlyannikov, V.N. (2013). T-stress for crack paths in test specimens subject to mixed mode loading. Engineering Fracture Mechanics, 108, pp. 3–18. DOI: 10.1016/j.engfracmech.2013.03.011. [16] Shlyannikov, V.N., Tumanov, A.V. (2014). Characterization of crack tip stress fields in test specimens using mode mixity parameters, International Journal of Fracture, 185, pp. 49-76. DOI: 10.1007/s10704-013-9898-0. [17] Shlyannikov, V.N., Tumanov, A.V., Zakharov, A.P. (2014). The mixed mode crack growth rate in cruciform specimens subject to biaxial loading, Theoretical and Applied Fracture Mechanics, 73, pp. 68-81. DOI: 10.1016/j.tafmec.2014.06.016. [18] Shlyannikov, V.N., Zakharov, A.P. (2017). Generalization of Mixed Mode Crack Behaviour by the Plastic Stress Intensity Factor, Theoretical and Applied Fracture Mechanics, 91, pp. 52-65. DOI: 10.1016/j.tafmec.2017.03.014 . [19] Hutchinson, J.W. (1968). Plastic stress and strain fields at a crack tip, Journal of Mechanics and Physics of Solids, 16, pp. 337-347. [20] Rice, J.R., Rosengren, G.F. (1968). Plane strain deformation near a crack tip in a power-law hardening material, Journal of Mechanics and Physics of Solids, 16, pp. 1-12. [21] Hutchinson, J.W. (1968). Singular behaviour at the end of a tensile crack in a hardening material, Journal of Mechanics and Physics of Solids, 16, pp. 13-31. [22] Shih, C.F. (1974). Small-Scale Yielding Analysis of Mixed Mode Plane-Strain Crack Problems, Fracture Analysis, ASTM Special Technical Publications, 560, pp.187-210. [23] Shlyannikov, V.N., Tumanov, A.V., Boychenko, N.V. (2015). A creep stress intensity factor approach to creep-fatigue crack growth, Engineering Fracture Mechanics, 142, pp. 201-219. DOI: 10.1016/j.engfracmech.2015.05.056. [24] Shlyannikov, V.N., Tumanov, A.V., Boychenko, N.V. (2018). Creep-fatigue crack growth rate assessment using ductility damage model, International Journal of Fatigue, 116, pp.448-461. DOI: 10.1016/j.ijfatigue.2018.07.003. [25] Boychenko, N.V. (2017). Parameters of cracked bodies behavior under creep conditions, Transactions of Academenergo, 1, pp. 104-118. [26] Saxena, A. (1998). Nonlinear fracture mechanics for engineers. Boca Raton, FL, CRC Press. [27] Shlyannikov, V.N., Tumanov, A.V., Zakharov, A.P., Gerasimenko, A.A. (2016). Surface flaw behavior under tension, bending and biaxial cyclic loading, International Journal of Fatigue, 92 (part 2), pp.557-576. DOI: 10.1016/j.ijfatigue.2016.05.003. [28] Slyannikov, V.N., Yarullin, R.R., Ishtyryakov, I.S. (2015). Surface crack growth in cylindrical hollow specimen subject to tension and torsion, Frattura ed Integrità Structurale, 33, pp.335-344. DOI: 10.3221/IGF-ESIS.33.37. [29] Yarullin, R.R., Ishtyryakov, I.S. (2016). Fatigue Surface Crack Growth in Aluminum Alloys under Different Temperatures. Procedia Engineering, 160, pp.199-206. DOI: 10.1016/j.proeng.2016.08.881. [30] Henry, B.S., Luxmoore, A.R. (1997). The Stress Triaxiality Constraint and the Q-value as Fracture Parameter, Engineering Fracture Mechanics, 57, pp.375-390. DOI: 10.1016/S0013-7944(97)00031-3. [31] Guo, W.L. (1993). Elastoplastic three dimensional crack border field-I,II, Engineering Fracture Mechanics, 46, pp.93- 113. DOI: 10.1016/0013-7944(93)90306-D.

RkJQdWJsaXNoZXIy MjM0NDE=