Issue 50

J.M. Vasco-Olmo et alii, Frattura ed Integrità Strutturale, 49 (2019) 658-666; DOI: 10.3221/IGF-ESIS.50.56 666 A CKNOWLEDGEMENTS he current work has been conducted with the financial support from Gobierno de España through the project ‘Proyecto de Investigación de Excelencia del Ministerio de Economía y Competitividad MAT2016-76951-C2-1-P’. R EFERENCES [1] Paris, P.C. (1960). A critical analysis of crack propagation laws, J. Basic Eng., 85, pp. 528–534. [2] Wells, A.A. (1961). Unstable crack propagation in metals. Cleavage and fast fracture, Proceedings of the Crack Propagation Symposium, Cranfield, UK, 1, 84. [3] Laird, C., Smith, G.C. (1962). Crack propagation in high stress fatigue, Philos. Mag. 8, pp. 847–857. [4] Vasco-Olmo, J.M., Díaz, F.A., García-Collado, A., Dorado, R. (2013). Experimental evaluation of crack shielding during fatigue crack growth using digital image correlation, Fatigue Fract. Engng Mater. Struct., 38, pp. 223–237. [5] Antunes, F.V., Branco, R., Costa, J.D., Rodrigues, D.M. (2010). Plasticity induced crack closure in middle-tension specimen: numerical versus experimental, Fatigue Fract. Engng Mater. Struct. 33, pp. 673–686. [6] Chu, T.C., Ranson, W.F., Sutton, M.A., Peters, W.H. (1985). Applications of digital-image correlation technique to experimental mechanics, Exp. Mech., 25, pp. 232–244. [7] De Matos, P.F.P., Nowell, D. (2007). On the accurate assessment of crack opening and closing stresses in plasticity- induced fatigue crack closure problems, Eng. Fract. Mech., 74, pp. 1579–1601. [8] Antunes, F.V., Rodrigues, S.M., Camas, D. (2016). A numerical analysis of CTOD in constant amplitude fatigue crack growth, Theoretical and Applied Fracture Mechanics, 85, pp. 45–55. [9] Korsunsky, A.M., Song, X., Belnoue, J., Jun, T., Hofmann, F., De Matos, P.F.P., Nowell, D., Dini, D. (2009). Aparicio-Blanco, O., Walsh, M.J., Crack tip deformation fields and fatigue crack growth rates in Ti-6Al-4V, Int. J. Fatigue, 31, pp. 1771–1779. [10] Skorupa, M., Beretta, S., Carboni, M., Machniewicz (2002). An algorithm for evaluating crack closure from local compliance measurements, Fatigue Fract. Engng Mater. Struct., 25, pp. 261–273. [11] Guo, W., Wang, C.H., Rose, R.F. (1999). The influence of cross-sectional thickness on fatigue crack growth, Fatigue Fract. Engng Mater. Struct., 22, pp. 437–444. [12] Tvergaard, V., (2004). On fatigue crack growth in ductile materials by crack-tip blunting, J. Mech. Phys. Solids, 52, pp. 2149–2166. [13] Pippan, R.G., Grosinger, W., (2013). Fatigue crack closure: From LCF to small scale yielding, Int. J. Fatigue, 46, pp. 41–48. T

RkJQdWJsaXNoZXIy MjM0NDE=