Issue 50

L. He et alii, Frattura ed Integrità Strutturale, 50 (2019) 649-657; DOI: 10.3221/IGF-ESIS.50.55 657 [28] Sun, Q., Zhang, W., Xue, L., Zhang, Z., Su, T. (2015). Thermal damage pattern and thresholds of granite, Environ. Earth Sci., 74(3), pp. 2341–2349. [29] Zuo, J.P., Wang, J.T., Sun, Y.J., Chen, Y., Jiang, G.H., Li, Y.H. (2017). Effects of thermal treatment on fracture characteristics of granite from Beishan, a possible high-level radioactive waste disposal site in China, Eng. Fract. Mech., 182, pp. s0013794416304076. [30] Labus, M., Lempart, M. (2018). Studies of polish Paleozoic shale rocks using FTIR and TG/DSC methods, J. Pet. Sci. Eng., 161, pp. 311–318. [31] Becattini, V., Motmans, T., Zappone, A., Madonna, C., Haselbacher, A., Steinfeld, A. (2017). Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage, Appl. Energy, 203, pp. 373–389. [32] Vázquez, P., Shushakova, V., Gómez-Heras, M. (2015). Influence of mineralogy on granite decay induced by temperature increase: Experimental observations and stress simulation, Eng. Geol., 189, pp. 58–67. [33] Chen, Y.L., Wang, S.R., Ni, J., Azzam, R., Fernández-Steeser, T.M. (2017). An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics, Eng. Geol., 220, pp. 234–242.

RkJQdWJsaXNoZXIy MjM0NDE=