Issue 50

N. A. Fountas et alii, Frattura ed Integrità Strutturale, 50 (2019) 584-594; DOI: 10.3221/IGF-ESIS.50.49 594 [6] Petropoulos, G.P., Pandazaras, C.N., Davim, J.P. (2010). Surface texture characterization and evaluation related to machining, In: Surface Integrity in Machining, ed. J.P. Davim, Springer, London, pp. 37-66. [7] Vaxevanidis, N.M., Kechagias, J.D., Fountas, N.A., Manolakos, D.E. (2014). Evaluation of machinability in turning of engineering alloys by applying artificial neural networks, Open Construction & Building Technol. J., 8, pp. 389-399. [8] Grzesik, W., Kruszynski, B., Ruszaj, A. (2010). Surface integrity of machined surfaces, In: Surface Integrity in Machin- ing, Davim, J.P. (Ed.), Springer, London, pp. 143-179. [9] Vaxevanidis, N.M., Galanis, N., Petropoulos, G.P., Karalis, N., Vasilakakos, P., Sideris, J. (2010). Surface roughness analysis in high speed-dry turning of tool steel, Proc. ESDA 2010: 10th Biennial ASME Conference on Engineering Systems Design and Analysis, July 12-14, Istanbul, Turkey. [10] Petropoulos, G.P., Pandazaras, C.N., Vaxevandis, N.M., Antoniadis, A. (2006). Multi-parameter identification and control of turned surface textures, Int. J. Adv. Manuf. Technol. 29, pp. 118-128. [11] Petropoulos, G. Pandazaras, C., Vaxevanidis, N.M., Ntziantzias, I., Korlos, A. (2007). Selecting subsets of mutually unrelated ISO 13565-2: 1997 surface roughness parameters in turning operations, Int. J. Comput. Mater. Sci. Surf. Eng., 1(1), pp. 114-128. [12] Petropoulos, G., Vaxevanidis, N.M., Pandazaras, C., Koutsomichalis, A. (2009). Postulated models for the fractal dimension of turned metal surfaces, J. Balkan Tribol. Assoc., 15(1), pp. 1-9. [13] Toulfatzis, A.I., Pantazopoulos, G.A., Paipetis, A.S. (2014). Fracture behavior and characterization of lead-free brass alloys for machining applications, J. Mater. Eng. Perform., 23, pp. 3193-3206. [14] Gaitonde, V.N., Karnik, S.R., Davim, J.P. (2012). Optimal MQL and cutting conditions determination for desired surface roughness in turning of brass using genetic algorithms, Mach. Sci. Technol., 16(2), pp. 304-320. [15] Hanief, M., Wani, M.F., Charoo, M.S. (2017). Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis, Eng. Sci. Technol., 20(3), pp. 1220-1226. [16] Mirjalili, S., Mirjalili, S.M., Lewis, A. (2014). Grey Wolf Optimizer. Adv. En. Soft., 69, pp. 46-61. [17] Jawahir, I.S. (1988). The chip control factor in machinability assessments: recent trends, J. Mech. Work. Techn., 17, pp. 213-224. [18] Jawahir I.S., Van Luttervelt, C.A. (1993). Recent developments in chip control research and applications, Ann. CIRP, 42(2), pp. 659-693. [19] Toulfatzis, A.I., Pantazopoulos, G.A., Besseris, G.J., Paipetis, A.S. (2016). Machinability evaluation and screening of leaded and lead-free brasses using a non-linear robust multifactorial profiler, Int. J, Adv. Manuf. Techn., 86(9-12), pp. 3241-3254. [20] Pantazopoulos, G. (2002). Leaded brass rods C 38500 for automatic machining operations: a technical report, J. Mater. Eng. Perform. 11(4), pp. 402-407. [21] Pantazopoulos, G.A., Toulfatzis, A.I. (2012). Fracture modes and mechanical characteristics of machinable brass rods, Metall., Microstruct., Anal., 1(2), pp. 106-114. [22] Galanis, N.I., Manolakos, D.E. (2010). Surface roughness prediction in turning of femoral head, Int. J. Adv. Manuf. Technol., 51(1-4), pp. 79-86. [23] Bonabeau, E., Dorigo, M., Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems: OUP USA. [23] Dorigo, M., Birattari, M., Stutzle, T. (2006). Ant colony optimization, Comput. Intell. Magaz., IEEE, 1, pp. 28–39. [25] Kennedy, J., Eberhart, R. (1995). Particle swarm optimization in Neural Networks. In: Proceedings, IEEE international conference on Neural Networks ICNN’95, pp. 1942–1948. [26] Wolpert, D.H., Macready, W.G. (1997). No free lunch theorems for optimization, IEEE Trans. Evolut. Comput., 1, pp. 67-82.

RkJQdWJsaXNoZXIy MjM0NDE=