Issue 50

I. Stavrakas et alii, Frattura ed Integrità Strutturale, 50 (2019) 573-583; DOI: 10.3221/IGF-ESIS.50.48 583 [33] Triantis, D., Anastasiadis, C. and Stavrakas, I. (2008). The correlation of electrical charge with strain on stressed rock samples, Nat. Hazards Earth Sys., 8, pp. 1243–1248. [34] Alexandridis, A., Triantis, D., Stavrakas, I. and Stergiopoulos, C. (2012). A neural network approach for compressive strength prediction in cement-based materials through the study of pressure-stimulated electrical signals, Const. Build. Mater., 30, pp. 294–300. [35] Triantis, D., Vallianatos, F., Stavrakas, I. and Hloupis, G. (2012). Relaxation phenomena of electrical signal emissions from rock following application of abrupt mechanical stress, Ann Geophys-Italy, 55(1), pp. 207–212. [36] Lavrov, A. (2003.) The Kaiser effect in rocks: principles and stress estimation techniques, Int. J. Rock Mech. Min. Sci., 40(2), pp. 151–171. [37] Li, C. and Nordlund, E. (1993). Assessment of damage in rock using the Kaiser effect of acoustic emission, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 30(7), pp. 943–946. [38] Tsimogiannis, A., Georgali, B. and Anastassopoulos, A. (2000). Acoustic Emission/Acousto-ultrasonic data fusion for damage evaluation in concrete, J. Acoustic Emissions, 18, pp. 21–28. [39] Weber, Z., Svadbik, P., Korenska, M. and Pazdera, L. (2000). Concrete crossbeam diagnosis by acoustic emission method, J. Acoustic Emissions, 18, pp. 29–32. [40] Colombo, S., Main, I.G. and Forde, M.C. (2003). Assessing damage of reinforced concrete beam using ‘‘b-value’’ ana- lysis of acoustic emission signals, J. Mat. Civil Eng., 15, pp. 280–286. [41] Rao, M.V.M.S. (1997). Acoustic emission signatures of rocks and concrete stressed to failure in compression under laboratory conditions, In: Proc. 4 th National Workshop on Acoustic Emission (NAWACE- 97), Mumbai, August 1997, pp. 31–41.

RkJQdWJsaXNoZXIy MjM0NDE=