Issue 50

D. Triantis et alii, Frattura ed Integrità Strutturale, 50 (2019) 537-547; DOI: 10.3221/IGF-ESIS.50.45 547 [12] Ohtsu, M. and Tomoda, Y. (2008). Phenomenological model of corrosion process in reinforced concrete identified by acoustic emission, ACI Mater. J., 105, pp. 194–199. [13] Aggelis, D.G., Soulioti, D.V., Sapouridis, N., Barkoula, N.M., Paipetis, A.S. and Matikas, T.E. (2011). Acoustic emission characterization of the fracture process in fibre reinforced concrete, Constr. Build. Mater., 25, pp. 4126–4131. [14] Main, I.G. (1989). A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics, Geophys. J., 96, pp. 131–138. [15] Exadaktylos, G.E., Vardoulakis, I. and Kourkoulis, S.K. (2001). Influence of nonlinearity and double elasticity on flexure of rock beams – II. Characterization of Dionysos marble, Int. J. Solids Struct. 38(22-23), pp. 4119–4145. [16] Triantis, D. (2018). Acoustic emission monitoring of marble specimens under uniaxial compression. Precursor phenomena in the near-failure phase, Procedia Structural Integrity 10, pp. 11–17. [17] Kourkoulis, S.K., Exadaktylos, G.E. and Vardoulakis, I. (1999). U-notched Dionysos-Pentelicon marble in three point bending: The effect of nonlinearity, anisotropy and microstructure., Int. J. Fracture, 98, pp. 369–392. [18] Calabrese, L., Campanella, G. and Proverbio, E. (2012). Noise removal by cluster analysis after long time AE cor- rosion monitoring of steel reinforcement in concrete, Constr. Build. Mater., 34, pp. 362–371. [19] Triantis, D., Stavrakas, I., Pasiou, E. D. and Kourkoulis, S.K. (2019). Assessing the acoustic activity in marble speci- mens under stepwise compressive loading, Mat. Design Process Comm., doi :https://doi.org/10.1002/mdp2.100. [20] Zhang, J-Z., Zhou X-P., Zhou, L-S. and Berto, F. (2019). Progressive failure of brittle rocks with non - isometric flaws: Insights from acousto- optic - mechanical (AOM) data, Fatigue Fract. Eng. Mater. Struct., 42, pp. 1787–1802. [21] Zhou, X-P., Zhang, J-Z., Qian, Q-H. and Niu, Y. (2019). Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques, J. Struct. Geol., 126, pp. 129–145. [22] Wang, X., Wang, E., Liu, X. (2019). Damage characterization of concrete under multi-step loading by integrated ultra- sonic and acoustic emission techniques, Constr. Build. Mater., 221, pp. 678–690. [23] Niu Y., Zhou X-P., Zhou L-S. (2019). Fracture damage prediction in fissured red sandstone under uniaxial compres- sion: acoustic emission b - value analysis, Fatigue Fract. Eng. Mater. Struct., DOI: 10.1111/ffe.13113. [24] Ohtsu, M. (Chairman) (2010). Recommendations of RILEM Technical Committee 212-ACD: Acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete: 3. Test method for classification of active cracks in concrete structures by acoustic emission, Mater Struct. 43, pp.1187–1189. [25] Aggelis, D.G. (2011). Classification of cracking mode in concrete by acoustic emission parameters. Mech. Res. Commun., 38, pp. 53–157.

RkJQdWJsaXNoZXIy MjM0NDE=