Issue 50

Z.-y. Han et alii, Frattura ed Integrità Strutturale, 50 (2019) 21-28; DOI: 10.3221/IGF-ESIS.50.03 28 [9] Arafin, M.A., Szpunar, J.A. (2009). A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies. Corrosion Science, 51(1), pp. 119-128. DOI: 10.1016/j.corsci.2008.10.006. [10] Liu, Z.Y., Li, X.G., Cheng, Y.F. (2012). Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization. Corrosion Science, 55, pp. 54-60. DOI: 10.1016/j.corsci.2011.10.002. [11] Sun, F.L., Ren, S., Li Z., Liu Z.Y., Li X.G., Du C.W. (2017).Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments. Materials Science & Engineering A, 685, pp.145–153. DOI: 10.1016/j.msea.2016.12.118. [12] Liu, Y., Wang, J.W., Liu, L., Li, Y., Wang, F.H. (2013). Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure. Corrosion Science, 74, pp. 59–70. DOI: 10.1016/j.corsci.2013.04.012. [13]Melchers, R.E. (2015). Effect of immersion depth on marine corrosion of mild steel. Corrosion, 61, pp. 895–906. DOI: 10.5006/1.3280659. [14] Junghans, A., Chellappa, R., Wang, P., Majewski, J., Luciano, G., Marcelli, R., Proietti, E. (2015). Neutron reflectometry studies of aluminum–saline water interface under hydrostatic pressure. Corrosion Science, 90, pp.101–106. DOI: 10.1016/j.corsci.2014.10.001. [15]Zhang, T., Yang, Y.G., Shao, Y.W., Meng, G.Z., Wang, F.H. (2009). A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe–20Cr alloy. Electrochimica Acta, 54, pp. 3915–3922. DOI: 10.1016/j.electacta. 2009.02.010. [16]Huang, Y.H., Xuan, F.Z., Tu, S.T. Itoh, T. (2011). Effects of hydrogen and surface dislocation on active dissolution of deformed 304 austenitic stainless steel in acid chloride solution. Materials Science and Engineering A, 528, pp.1882– 1888. DOI : 10.1016/j.msea.2010.10.055. [17]Huang, Y.H., Tu, S.T., Xuan, F.Z. (2013). Modeling and simulation of pit chemistry of 304 austenitic stainless steel under applied stress in sodium chloride solution. Nuclear Engineering and Design, 257, pp.45–52. DOI: 10.1016 /j.nucengdes. 2013.01.019. [18 ]Mao, S.X., Li, M. (1998) Mechanics and thermodynamics on the stress and hydrogen interaction in crack tip stress corrosion: experiment and theory. Journal of the Mechanics and Physics of Solids, 46(6), pp. 1125-1137. DOI: 10.1016 /S0022-5096(97)00054-9. [19]Wang, Y.X., Zhao, W.M., Ai, H., Zhou, X.G., Zhang, T.M. (2011). Effects of strain on the corrosion behaviour of X80 steel. Corrosion Science, 53, pp.2761–2766. DOI: 10.1016/j.corsci.2011.05.011. [20]Ramberg, W., Osgood, W.R. (1943). Description of stress ‐ strain curves by three parameters. NACA Technical Note No. 902.

RkJQdWJsaXNoZXIy MjM0NDE=