Issue 50

N. Chatzidai et alii, Frattura ed Integrità Strutturale, 50 (2019) 407-413; DOI: 10.3221/IGF-ESIS.50.34 413 [8] Giordano, R.A., Wu, B.M., Borland, S.W., Cima, L.G., Sachs, E.M., Cima, M.J. (1996). Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Ed., 8(1), pp. 63–75. [9] Kousiatza, C., Chatzidai, N., Karalekas, D. (2017). Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study, Sensors, 17(3), pp. 456, DOI: 10.3390/s17030456. [10] Dinwiddie, R.B., Kunc, V., Lindal, J.M., Post, B., Smith, R.J., Love, L., Duty, C.E. (2014). Infrared Imaging of the Polymer 3D-Printing Process, Proc. of SPIE, 9105, 910502-1, DOI: 10.1117/12.2053425. [11] Costa, S.F., Duarte, F.M., Covas, J.A. (2017). Estimation of filament temperature and adhesion development in fused deposition techniques, J. Mater. Process. Technol., 245, pp. 167–179, DOI: 10.1016/j.jmatprotec.2017.02.026. [12] Kantaros, A., Karalekas, D. (2013). Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process, Mater. Des., 50, pp. 44–50, DOI: 10.1016/j.matdes.2013.02.067. [13] Kousiatza, C., Karalekas, D. (2016). In-situ monitoring of strain and temperature distributions during fused de- position modeling process, JMADE, 97, pp. 400–406, DOI: 10.1016/j.matdes.2016.02.099. [14] Rayegani, F., Onwubolu, G.C. (2014). Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE), Int. J. Adv. Manuf. Technol., 73(1-4), pp. 509-519, DOI: 10.1007/s00170-014-5835-2. [15] Huang, B., Singamneni, S. (2015). Raster angle mechanics in fused deposition modelling, J. Compos. Mater., 49(3), pp. 363-383, DOI: 10.1177 /0021998313519153 . [16] Yan, Y., Zhang, R., Hong, G., Yuan, X. (2000). Research on the bonding of material paths in melted extrusion modeling, Mater. Des., 21(2), pp. 93-99, DOI: 10.1016/S0261-3069(99)00058-8. [17] Rezayat, H., Zhou, W., Siriruk, A., Penumadu, D., Babu, S.S. (2015). Structure–mechanical property relationship in fused deposition modelling, Mater. Sci. Technol., 31(8), pp. 895-903, DOI: 10.1179/1743284715Y.0000000010. [18] Rodríguez, J.F., Thomas, J.P., Renaud, J.E. (2003). Mechanical behavior of acrylonitrile butadiene styrene fused deposition materials modeling, Rapid Prototyp. J., 9(4), pp. 219-230, DOI: 10.1108/13552540310489604. [19] Ahn, S.H., Baek, C., Lee, S., Ahn, I.S. (2003). Anisotropic Tensile Failure Model of Rapid Prototyping Parts - Fused Deposition Modeling (FDM), Int. J. Mod. Phys. B, 17(8-9), pp. 1510–1516, DOI: 10.1142/S0217979203019241. [20] Sun, Q., Rizvi, G.M., Bellehumeur, C.T., Gu, P. (2008). Effect of processing conditions on the bonding quality of FDM polymer filaments, Rapid Prototyp. J., 14(2), pp. 72–80, DOI: 10.1108/13552540810862028. [21] Luzanin, O., Movrin, D., Plancak, M. (2014). Effect of layer thickness, deposition angle, and infill on maximum flexural force in FDM-built specimens, J. Technol. Plast., 39(1), pp. 49–58. [22] Sood, A.K., Ohdar, R.K., Mahapatra, S.S. (2012). Experimental investigation and empirical modelling of FDM process for compressive strength improvement, J. Adv. Res., 3, pp. 81–90, DOI: 10.1016/j.jare.2011.05.001. [23] Boschetto, A., Bottini, L., Veniali, F. (2016). Integration of FDM surface quality modeling with process design, Addit. Manuf., 12, pp. 334–344, DOI: 10.1016/j.addma.2016.05.008. [24] Lee, B.H., Abdullah, J., Khan, Z.A. (2005). Optimization of rapid prototyping parameters for production of flexible ABS object, J. Mater. Process. Technol., 169, pp. 54–61, DOI: 10.1016/j.jmatprotec.2005.02.259. [25] Gurrala, P.K., Regalla, S.P. (2014). Part strength evolution with bonding between filaments in fused deposition modelling, Virtual Phys. Prototyp., 9(3), pp. 141-149, DOI: 10.1080/17452759.2014.913400. [26] Magalhães, L.C., Volpato, N., Luersen, M.A. (2014). Evaluation of stiffness and strength in fused deposition sandwich specimens, J. Brazilian Soc. Mech. Sci. Eng., 36(3), pp. 449-459, DOI: 10.1007/s40430-013-0111-1. [27] Sood, A.K., Ohdar, R.K., Mahapatra, S.S. (2010). Parametric appraisal of mechanical property of fused deposition modelling processed parts, Mater. Des., 31, pp. 287–295, DOI: 10.1016/j.matdes.2009.06.016. [28] Abbott, A.C., Tandon, G.P., Bradford, R.L., Koerner, H., Baur, J.W. (2018). Process-structure-property effects on ABS bond strength in fused filament fabrication, Addit. Manuf., 19, pp. 29–38, DOI: 10.1016/j.addma.2017.11.002. [29] Sun, Q., Rizvi, G.M., Bellehumeur, C.T. and Gu, P., 2003, August. Experimental study of the cooling characteristics of polymer filaments in FDM and impact on the mesostructures and properties of prototypes. In Proceedings of the 14th Solid Freeform Fabrication Symposium, Austin, pp. 313–323. [30] Zhang, Y., Chou, Y. (2006). Three-dimensional finite element analysis simulations of the fused deposition modelling process, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 220(10), pp. 1663-1671, DOI: 10.1243/09544054JEM572. [31] Costa, S.F., Duarte, F.M., Covas, J.A. (2015). Thermal conditions affecting heat transfer in FDM/FFE: a contribution towards the numerical modelling of the process, Virtual Phys. Prototyp., 10(1), pp. 35–46. [32] Zhang, J., Wang, X.Z., Yu, W.W., Deng, Y.H. (2017). Numerical investigation of the influence of process conditions on the temperature variation in fused deposition modeling, Mater. Des., 130, pp. 59–68. [33] Li, H., Wang, T., Sun, J., Yu, Z. (2018). The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties, Rapid Prototyp. J., 24(1), pp. 80-92, DOI: 10.1108/RPJ-06-2016-0090.

RkJQdWJsaXNoZXIy MjM0NDE=