Issue 50

P. Qiu, Frattura ed Integrità Strutturale, 50 (2019) 300-309; DOI: 10.3221/IGF-ESIS.50.25 309 3. Fracture energy F G decreased rapidly first and then slowly with the development of temperature. R EFERENCES [1] Caggiano, A., Cremona, M., Faella C., Lima C. and Martinelli E. (2012). Fracture behavior of concrete beams reinforced with mixed long/short steel fibers, Construction & Building Materials, 37(3), pp. 832-840. DOI: 10.1016/j.conbuildmat.2012.07.060 [2] Akcay, B., Agar-Ozbek, A.S. and Bayramov, F. (2012). Interpretation of aggregate volume fraction effects on fracture behavior of concrete, Construction & Building Materials, 28(1), pp. 437-443. [3] Zhang, C., Yang, X. and Hu, G. (2018). Effect of randomness of interfacial properties on fracture behavior of concrete under uniaxial tension, Acta Mechanica Solida Sinica, 31(2), pp. 1-13. [4] Arezoumandi, M. and Volz, J.S. (2013). Effect of fly ash replacement level on the fracture behavior of concrete, Frontiers of Structural and Civil Engineering, 7(4), pp. 411-418. [5] Corr, D., Accardi, M., Graham-Brady, L. and Shah, SH. (2016). Digital image correlation analysis of interfacial debonding properties and fracture behavior in concrete, Engineering Fracture Mechanics, 74(1), pp. 109-121. [6] Zhai, C., Wang, X. and Kong, J. (2017). A sophisticated simulation for the fracture behavior of concrete material using XFEM, Earthquake Engineering & Engineering Vibration, 16(4), pp. 1-23. [7] Simonin, F., Olagnon, C. and Maximilien, S. (2010). Room temperature quasi-brittle behaviour of an aluminous refractory concrete after firing, Journal of the European Ceramic Society, 22(2), pp. 165-172. [8] Basamant, Z.P. and Becq-Giraudon, E. (2002). Statistical prediction of fracture parameters of concrete and implications for selection of test standard, Cement & Concrete Research, 32(4), pp. 529-556. [9] Gawin, D., Majorana, C.E. and Schrefler, B.A. (2015). Digital analysis of hygro thermal behaviour and damage of concrete at high temperature, International Journal for Digital & Analytical Methods in Geomechanics, 4(1), pp. 37-74. [10] Lu, Z.D., Yu, K.Q., Su, L., Lin, C.L. (2012) Residual fracture behaviors of concrete subjected to elevated temperatures, Journal of Building Materials, 15(6), pp. 836-840. [11] Baker, G. (1996). The effect of exposure to elevated temperatures on the fracture energy of plain Concrete, RILEM Materials and Structures, 29(190), pp. 383-388. [12] Menou, A., Mounajed, G., Boussa, H., Pineaud, A. and Carre, H. (2006). Residual fracture energy of cement paste, mortar and concrete subject to high temperature, Theoretical & Applied Fracture Mechanics, 45(1), pp. 64-71. [13] General Office of the National Development and Reform Commission. (2005). DL/T 5332-2005, Norm for fracture test of hydraulic concrete. [14] Yan, L., Xing, Y.M. and Hao, Y.H. (2012). High temperature mechanical properties and microscopic analysis of hybrid fiber reinforced high performance concrete (HFHPC), Concrete, (1), pp. 24-28. [15] Wang, B.S. and Li, Z. (2011). Experiment study on ascertaining the burning degree of the concrete components, Concrete, 27(2), pp. 162-167. [16] Xu, S.L., Zhou, H.G., Gao, H.B. and Zhao, S.Y. (2006). An experimental study on double-K fracture parameters of concrete for dam construction with various grading aggregates, China Civil Engineering Journal, 39(11), pp. 50-62. [17] Carloni, C., Santandrea, M. and Wendner, R. (2017). An investigation on the “width and size effect” in the evaluation of the fracture energy of concrete, Procedia Structural Integrity, 3, pp. 450-458. [18] Swartz, S.E. and Yap, S.T. (1988) The influence of dead load on fracture energy measures using the RILEM method, Materials & Structures, 21(6), pp. 410-415.

RkJQdWJsaXNoZXIy MjM0NDE=