Issue 50

F. Jafari et alii, Frattura ed Integrità Strutturale, 50 (2019) 209-230; DOI: 10.3221/IGF-ESIS.50.18 230 [13] Bagheri, A., Amiri, G. G. and Haghdoust, J. (2014). New method for the estimation of strong ground motions based on the colonial competitive algorithm. KSCE Journal of Civil Engineering, 18(5), pp. 1403-1410. DOI:10.1007/s12205-014-0034-0. [14] Pang, Y., Dang, X.and Yuan, W. (2014). An artificial neural network based method for seismic fragility analysis of highway bridges. Advances in Structural Engineering, 17(3), pp. 413-428. [15] Kalman Šipoš, T.and Strukar, K. (2019). Prediction of the Seismic Response of Multi-Storey Multi-Bay Masonry Infilled Frames Using Artificial Neural Networks and a Bilinear Approximation. Buildings, 9(5), 121. [16] Gholizadeh, S. and Salajegheh, E. (2010). Optimal design of structures for earthquake loading by self organizing radial basis function neural networks. Advances in Structural Engineering, 13(2), pp. 339-356. [17] Badarloo, B. and Jafari, F. (2018). A Numerical Study on the Effect of Position and Number of Openings on the Performance of Composite Steel Shear Walls. Buildings, 8(9), 121. [18] ABAQUS Version 13 (General Purpose Finite Element Analysis Software documentation). [19] Gara, F., Ragni, L., Roia, D. and Dezi, L. (2012). Experimental behavior and numerical analysis of floor sandwich panels. Engineering Structures, 36, pp. 258-269. DOI: 10.1016/j.engstruct.2011.12.011. [20] Center, P. E. E. R. (2013). Peer ground motion database. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, http://ngawest2. berkeley. edu. [21] ACI Committee. (2005). Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R- 05). American Concrete Institute. DOI: 10.14359/12026. [22] Hsu, L. S. and Hsu, C. T. (1994). Complete stress—strain behaviour of high-strength concrete under compression. Magazine of Concrete Research, 46(169), pp. 301-312. [23] Popovics, S. (1998). Strength and related properties of concrete: A quantitative approach. John Wiley & Sons. [24] Nilson, A. H. and Martinez, S. (1986). Mechanical properties of high-strength lightweight concrete. In Journal Proceedings 83(4), pp. 606-613. [25] Dufour, J. F., Reny, S. and Vézina, D. (2006). State-of-the-Art Specifications for Shotcrete Rehabilitation Projects.Shotcrete Magazine, 8(4), pp. 4-11. [26] Kaushik, H. B., Rai, D. C. and Jain, S. K. (2007). Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of materials in Civil Engineering, 19(9), pp. 728-739. [27] George, T., Deshpande, V. S., Sharp, K. and Wadley, H. N. (2014). Hybrid core carbon fiber composite sandwich panels: fabrication and mechanical response. Composite Structures, 108, pp. 696-710. [28] ASTM (2000). 578-Standard Specification for Rigid. Cellular Polystyrene Thermal Insulation. [29] Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), pp. 665-685. DOI: 10.1109/21.256541. [30] Ghanei, A., Jafari, F., Khotbehsara, M. M., Mohseni, E., Tang, W. and Cui, H. (2017). Effect of nano-CuO on engineering and microstructure properties of fibre-reinforced mortars incorporating metakaolin: experimental and numerical studies. Materials, 10(10), 1215. [31] Naseri, F., Jafari, F., Mohseni, E., Tang, W., Feizbakhsh, A. and Khatibinia, M. (2017). Experimental observations and SVM-based prediction of properties of polypropylene fibres reinforced self-compacting composites incorporating nano- CuO. Construction and Building Materials, 143, pp. 589-598. [32] Khotbehsara, M.M.; Miyandehi, B.M., Naseri, F., Ozbakkaloglu, T., Jafari, F., Mohseni, E. (2018). Effect of SnO 2 , ZrO 2 , and CaCO 3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash: Experimental observations and ANFIS predictions. Constr. Build. Mater. 158, pp. 823–834.

RkJQdWJsaXNoZXIy MjM0NDE=