Issue 50

J. Papuga et alii, Frattura ed Integrità Strutturale, 50 (2019) 163-183; DOI: 10.3221/IGF-ESIS.50.15 183 [39] Susmel, L. (2011). Comments on "A survey on evaluating the fatigue limit under multiaxial loading" by Jan Papuga [Int J Fatigue 33 (2011) 153 - 165]. Int J Fatigue. 33(10), pp.1392 - 1395. DOI: 10.1016/j.ijfatigue.2011.04.005. [40] Matake, T. (1977). An explanation on fatigue limit under combined stress. Bull JSME, 20, pp. 257–63. [41] McDiarmid, D.L. (1991). A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract Eng Mater Struct, 14, pp. 429–53. [42] Dang Van, K. (1973) Sur la résistance à la fatigue des métaux. [PhD thesis],Sci Techniq l´Armement 47, pp. 647. [43] Papuga, J. and Růžička, M. (2008). Two new multiaxial criteria for high cycle fatigue computation, Int. Jnl. of Fatigue, 30, pp. 58-66. DOI: 10.1016/j.ijfatigue.2007.02.015. [44] Tomčala, J., Papuga, J., Horák, D., Hapla, V., Pecha, M. and Čermák, M. (2018). Steps to increase practical applicability of PragTic software. Advances in Engineering Software. DOI: 10.1016/j.advengsoft.2018.06.009. [45] Kenmeugne, J. L., Vidal-Salle, E., Robert, J. L. and BAHUAUD, R. J. (1996). On a new multiaxial fatigue criterion based on a selective integration approach. In: Fatigue ’96, Proc. of the Sixth Int. Fatigue Congress, Vol. II. G. Lütjering, Ed., Berlin, Pergamon, pp. 1013-1018. [46] Papuga J. (2011). Answer to comments on “A survey on evaluating the fatigue limit under multiaxial loading” [Int J Fatigue 33 (2011) 153–165]. Int J Fatigue. 33(10), pp. 1396 - 1402. DOI: 10.1016/j.ijfatigue.2011.04.006). [47] Papuga, J. (2018). Database of Fatigue Limits - Job File for PragTic. Available at: http://www.pragtic.com/FL_job.php. [48] Papuga, J., Vargas, M. and Růžička, M. (2015). Wiles of Using Hollow Specimens for Fatigue Tests. Applied Mechanics and Materials, 732, pp. 71-76. DOI: 10.4028 /www.scientific.net/AMM.732.71.

RkJQdWJsaXNoZXIy MjM0NDE=