Issue 46

M. El Habiri et alii, Frattura ed Integrità Strutturale, 46 (2018) 34-44; DOI: 10.3221/IGF-ESIS.46.04 44 [42] Houghton, S.J. (2010). Finite analysis of the cold expansion of aircraft fastner holes, DTA Report 295. [43] Neuber, H. (1960). Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. Trans. ASME, Journal of Applied Mechanics, pp. 544-550. [44] Peterson, R.E. (1974). Stress Concentration Factors, John Wiley and Sons. [45] Hall, L.R., Shah, R.C. and Engstorn, W.L. (1974). Fracture and fatigue crack growth behavior of surface flaws originating at fastener holes. AFFDL-TR-74-47, Air Force Flight Dynamics Lab, Ohio. [46] Basquin, O.H. (1910). The exponential law of endurance tests, Proceedings of American Society of Testing and Materials, 10 Part II, pp. 625-630. [47] Coffin, L.F. (1954). A study of effects of cyclic thermal stresses on a ductile metal, Transactions of the ASME, 76, pp. 931-950. [48] Harter, J.A. (2006). AFGROW users guide and technical manual: AFGROW for Windows 2K/XP. Version 4.0011.14, Air Force Research Laboratory. [49] Man, S. (2005). Etude de l’influence et de l’optimisation du degré d’expansion à froid dans les mécanismes de réamorçage d’une fissure: étude numérique et expérimentale. Doctoral Thesis. University of Sciences and Technologies of Lille; France. [50] Todoroki, A. and Kobayashi H. (1991). Prediction of fatigue crack growth rate in residual stress fields. Key Engineering Materials: Fracture Strength, 367, pp. 51–62. DOI:10.4028/ www.scientific.net/KEM.51-52.367. [51] Nigrelli, V. and Pasta, S. (2008). Finite-element simulation of residual stress induced by split-sleeve cold expansion process of holes . Journal of Materials Processing Technology , 205, pp. 290–296. DOI:10.1016/j.jmatprotec.2007.11.207.

RkJQdWJsaXNoZXIy MjM0NDE=