Issue 46

N. Hiyoshi et alii, Frattura ed Integrità Strutturale, 46 (2018) 25-33; DOI: 10.3221/IGF-ESIS.46.03 33 R EFERENCES [1] Zhu, Y., Li, X., Gao, R. and Wang, C. (2014). Low-cycle fatigue failure behavior and life evaluation of lead-free solder joint under high temperature, Microelectronics Reliability 54(12), pp. 2922–2928. [2] Kawano, K., Naka, Y., Tanie, H., Kimoto, R. and Yamamoto, K. (2012). Fatigue Life Evaluation of Sn3Ag0.5Cu Solder Joints after High Temperature Holding, Transactions of the Japan Society of Mechanical Engineers, Series A, 78(793), pp. 1314–1324. [3] Yamamoto, T., Itoh, T., Sakane, M. and Tsukada, Y. (2012). Creep-fatigue life of Sn-8Zn-3Bi solder under multiaxial loading, International Journal of Fatigue, 43, pp. 235–241. [4] Hiyoshi, N., Katoh, A., Sakane, M. and Tsukada, Y. (2009). Low Cycle Fatigue Lives of Sn-37Pb and Sn-3.5Ag Solders at Low Temperatures, Journal of the Society of Materials Science, 58(2), pp. 155–161. [5] Hiyoshi, N., Itoh, T. and Sakane, M. (2009). Development of Thermal Mechanical Fatigue Testing Machine for Solders, Journal of the Society of Materials Science, 58(2), pp. 162–167. [6] The Society of Materials Science, Japan, Factual database on tensile, creep, low cycle fatigue and creep-fatigue of lead and lead-free solders, The Society of Materials Science, Japan (2013). [7] Pilkey, W. D., Pilkey, D. F. (2007). Peterson’s Stress Concentration Factors. [8] The Society of Materials Science, Japan, Standard Low Cycle Fatigue Testing for Solders, The Society of Materials Science, Japan (2000). [9] Dowling N. E. (1976). ASTM STP 601, American Society for Testing and Materials, pp. 19–32.

RkJQdWJsaXNoZXIy MjM0NDE=