Issue 46

I. Shardakov et alii, Frattura ed Integrità Strutturale, 46 (2018) 383-390; DOI: 10.3221/IGF-ESIS.46.35 390 [7] Raghavan A. and Cesnik C.E.S. (2007). Review of guided-wave structural health monitoring, Shock and Vibration Digest, 39 (2), pp. 91–114. DOI: 10.1177/0583102406075428. [8] Liu, X.L., Jiang, Z.W. and Ji, L. (2013). Investigation on the design of piezoelectric actuator/sensor for damage detection in beam with lamb waves, Exp. Mech. 53 (3), pp. 485–492. DOI: 10.1007/s11340-012-9646-9. [9] Song G., Gu H., Mo Y. L., Hsu T. T. C., Dhonde H. (2007). Concrete structural health monitoring using embedded piezoceramic transducers, Smart Mater. Struct. 16(4), pp. 959–968. DOI: 10.1088/0964-1726/16/4/003. [10] Bykov, A.A., Matveenko, V.P., Shardakov, I.N. and Shestakov, A.P. (2017). Shock wave method for monitoring crack repair processes in reinforced concrete structures, Mech. Solids 52 (4), pp. 378–383. DOI: 10.3103/S0025654417040033. [11] Fröjd P. and Ulriksen P. (2016). Amplitude and phase measurements of continuous diffuse fields for structural health monitoring of concrete structures, NDT&E International, 77, pp. 35–41. DOI: 0.1016/j.ndteint.2015.10.003. [12]Xu, K., Deng, Q., Cai, L., Ho, S. and Song, G (2018). Damage detection of a concrete column subject to blast loads using embedded piezoceramic transducers, Sensors, 18 (5), 1377. DOI: 10.3390/s18051377.

RkJQdWJsaXNoZXIy MjM0NDE=