Issue 46

L.U. Argiento et alii, Frattura ed Integrità Strutturale, 46 (2018) 226-239; DOI: 10.3221/IGF-ESIS.46.21 239 [11] Kooharian, A. (1952). Limit analysis of voussoir (segmental) and concrete arches, J. American Concrete Institute, 24(4), pp. 317-28. [12] Heyman, J. (1966). The stone skeleton, Int. J. Solids Struct., 2, pp. 249-79. [13] Drucker, D.C. (1954). Coulomb friction, plasticity and limit loads, J. App. Mech., 21(1), pp. 71-4. [14] Livesley, R.K. (1978). Limit analysis of structures formed from rigid blocks, Int. J. Num. Method Eng., 12, pp. 1853- 71. DOI: 10.1002/nme.1620121207. [15] Casapulla, C. and Maione, A. (2016). Formulating the torsion strength of dry-stacked stone blocks by comparing convex and concave contact formulations and experimental results, Indian Journal of Science and Technology, 9(46), 1-7.c DOI: 10.17485/ijst/2016/v9i46/107346. [16] Casapulla, C. and Maione, A. (2018). Modelling the dry-contact interface of rigid blocks under torsion and combined loading: concavity vs. convexity formulation, Int. J. Nonlin. Mech., 99, pp. 86-96. DOI: 10.1016/j.ijnonlinmec.2017.11.002. [17] Sarhosis, V., Garrity, S.W. and Sheng, Y. (2015). Influence of brick–mortar interface on the mechanical behaviour of low bond strength masonry brickwork lintels, Eng. Struct., 88, pp.1–11. DOI: 10.1016/j.engstruct.2014.12.014. [18] Sassu, M., Giresini, L., Bonannini, E. and Puppio M.L. (2016). On the Use of Vibro-Compressed Units with Bio- Natural Aggregate, Buildings, 6(3), art. no. 40. DOI: 10.3390/buildings6030040. [19] D’Ayala, D. and Speranza, E., 2003. Definition of collapse mechanisms and seismic vulnerability of masonry structures, Earthq. Spectra, 19(3), 479-509. DOI: 10.1193/1.1599896. [20] Orduña, A. (2003). Seismic assessment of ancient masonry structures by rigid blocks limit analysis, Ph.D. Thesis, University of Minho, Guimarães, Portugal. [21] Casapulla, C., Maione, A., Argiento, L.U. and Speranza E. (2018). Corner failure in masonry buildings: an updated macro-modeling approach with frictional resistances, Eur. J. Mech. A-Solid, 70, pp. 213-225. DOI: 10.1016/j.euromechsol.2018.03.003. [22] Casapulla, C. and Argiento, L.U. (2018). In-plane frictional resistances in dry block masonry walls and rocking-sliding failure modes revisited and experimentally validated, Compos. Part B-Eng., 132, pp. 197-213. DOI: 10.1016/j.compositesb.2017.09.013. [23] Lagomarsino, S. and Podestà, S. (2004). Seismic vulnerability of ancient churches: I. Damage assessment and emergency planning, Earthq. Spectra, 20(2), pp. 377-94. DOI: 10.1193/1.1737735. [24] Pantò, B., Giresini, L., Sassu, M. and Caliò, I. (2017). Non-linear modeling of masonry churches through a discrete macro-element approach, Earthq. Struct., 12(2), pp. 223-236. DOI: 10.12989/eas.2017.12.2.223. [25] Giresini, L., Sassu, M., Butenweg, C., Alecci, V. and De Stefano, M.D. (2017). Vault macro-element with equivalent trusses in global seismic analyses, Earthq. Struct., 12(4), pp. 409-423. DOI: 10.12989/eas.2017.12.4.409. [26] Lagomarsino, S. (2015). Seismic assessment of rocking masonry structures, B. Earthq. Eng., 13(1), pp. 97-128. DOI: 10.1007/s10518-014-9609-x. [27] Casapulla, C. and Maione, A. (2017). Critical response of free-standing rocking blocks to the intense phase of an earthquake, International Review of Civil Engineering, 8(1), pp. 1-10. DOI: 10.15866/irece.v8i1.11024. [28] Speranza, E. (2003). An integrated method for the assessment of the seismic vulnerability of historic buildings, Ph.D. Thesis, University of Bath, UK. [29] De Buhan, P. and De Felice, G. (1997). A homogenisation approach to the ultimate strength of brick masonry, J. Mech. Phys. Solids, 45(7), pp. 1085-104. DOI: 10.1016/S0022-5096(97)00002-1.

RkJQdWJsaXNoZXIy MjM0NDE=