Issue 46

S.M. Medjdoub et alii, Frattura ed Integrità Strutturale, 46 (2018) 102-112; DOI: 10.3221/IGF-ESIS.46.11 112 [20] Achour, A., Albedah, A., Benyahia, A., Bachir Bouiadjra, B. and Ouinas, D., (2016). Analysis of repaired cracks with bonded composite wrap in pipes under bending, J. Pressure Vessel Technology, 138 060909-6. DOI: 10.1115/1.4033449. [21] Lam, C., Cheng, J. and Yam, C., (2011). Finite element study of cracked steel circular tube repaired by FRP Patching. Procedia engineering, 14, pp. 1106-1113. DOI: 10.1016/j.proeng.2011.07.139. [22] Paris, P.C. and Erdogan, F., (1963). A critical analysis of crack propagation laws, J. Basic Eng. Trans. ASME Ser D, 85, pp. 528–534. [23] Liua, J., Qina, M., Zhaob, Q., Chena, L., Liub, P. and Gao, J., (2017). Fatigue performances of the cracked aluminum- alloy pipe repaired with a shaped CFRP patch, J. Thin-Walled Structures, 112, pp. 140–148. DOI: 10.1016/j.tws.2016.11.008. [24] Zarrinzadeh, H., Kabir, M.Z. and Deylami, A., (2017). Crack growth and debonding analysis of an aluminum pipe repaired by composite patch under fatigue loading, J. Thin-Walled Structures, 112, pp. 140–148. DOI: 10.1016/j.tws.2016.12.023. [25] Da Costa Mattos, H.S., Reis, J.M.L., Paima, L.M., Da Silva, M.L., Lopes Junior, R. and Perrut, V.A., (2016). Failure analysis of corroded pipelines reinforced with composite repair systems, J. Engineering Failure Analysis, 59, pp. 223– 236. DOI: 10.1016/j.engfailanal.2015.10.007. [26] Zarrinzadeh, H., Kabir, M.Z. and Deylami, A., (2017). Experimental and numerical fatigue crack growth of an aluminium pipe repaired by composite patch, J. Engineering Structures, 133, pp. 24–32. DOI: 10.1016/j.engstruct.2016.12.011. [27] Watanabe Junior, M.M., Reis, J.M.L. and Da Costa Mattos, H.S., (2017). Polymer-based composite repair system for severely corroded circumferential welds in steel pipes, J. Engineering Failure Analysis, 81, pp. 135–144. DOI: 10.1016/j.engfailanal.2017.08.001. [28] Erdogan, F. and Sih, G., (1963). On the crack extension in plates under plane loading and transverse shear, J. Basic Eng., 85, pp. 519–525. DOI: 10.1115/1.3656897. [29] Erdogan, F. and Kibler, J., (1969). Cylindrical and spherical shells with cracks, Int. J. Fract. Mech., 5, pp. 229–286. DOI: 10.1016/0029-5493(72)90031-3. [30] Zahoor, A., (1985). Closed form expressions for fracture mechanics analysis of cracked pipes, J. Pressure Vessel Technol., 107, pp. 203–205. DOI: 10.1115/1.3264435. [31] Sanders, J. L., (1982). Circumferential through-cracks in cylindrical shells under tension, J. Appl. Mech., 49, pp. 103– 107. DOI: 10.1115/1.3161948. [32] Forman, R., Hickman, J. and Shivaskumar, V., (1985). Stress intensity factors for circumferential through cracks in hollow cylinders subjected to combined tension and bending loads, Eng. Fract. Mech., 21, pp. 563–571. DOI: 10.1016/S0013-7944(85)80049-7. [33] Zárate, B. A., Caicedo, J. M., Yu, J. and Ziehl, P., (2012). Bayesian model updating and prognosis of fatigue crack growth, Eng. Struct., 45, pp. 53–61. DOI: 10.1016/j.engstruct.2012.06.012. [34] ABAQUS standard User's manual, Karlsson and Sorensen, (2005). [35] Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wikström, C. and Wold, S., (2000). Design of experiments: Principles and applications, Stockholm, Learnways AB, https://www.dynacentrix.com/telecharg/Modde/Livredoe.pdf. [36] MODDE 5.0, Modelling and Design, Umetrics AB, Umea, Sweden. (1999). [37] Abd-Elhadya, A.A., Sallama, H.E.M. and Mubarakia, M.A., (2017). Failure analysis of composite repaired pipelines with an inclined crack under static internal pressure, Procedia Structural Integrity, 05, pp. 123–130. DOI: 10.1016/j.prostr.2017.07.077.

RkJQdWJsaXNoZXIy MjM0NDE=