Issue 53

A. Desai et alii, Frattura ed Integrità Strutturale, 53 (2020) 426-433; DOI: 10.3221/IGF-ESIS.53.33 433 A CKNOWLEDGMENT uthors gratefully acknowledge the experimental facilities provided by the Research Centre, S.D.M. College of Engineering & Technology, Dharwad, Karnataka, India and Research Centre, PESITM, Shivamogga, Karnataka, India. R EFERENCES [1] Laffan, M.J., Pinho, S.T., Robinson, P., McMilllan, A.J. (2012). Translaminar fracture toughness testing of composites: A review”, Polymer Testing, , pp. 481-489. DOI: 10.1016/j.polymertesting.2012.01.002. [2] Kudari, S. K., Sharanaprabhu, C.M. (2010). On the relationship between stress intensity factor (K) and minimum plastic zone radius (MPZR) for four-point bend specimen under Mixed mode loading, International Journal of Engineering, Science and Technology, 2(5), pp. 13-22. DOI: 10.4314/ijest.v2i5.60095. [3] He, M. Y., Hutchinson, J.W. (2000). Asymmetric four-point crack specimen. Journal of Applied Mechanics, 67, pp. 207-209. DOI: 10.1115/1.321168 [4] James, R. R. (1990). Mixed-mode Bending Method for Delamination Testing, AIAA Journal, 28(7), pp. 1270-1276. DOI: 10.2514/3.25204 [5] Kenane, M., Benzeggagh, M. L. (1997). Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading, Composites Science and Technology, 57 pp. 597-605. DOI: 10.1016/S0266-3538(97)00021-3 [6] Sham Prasad, M.S., Venkatesh, C.S. and Jayaraju, T.(2011). Experimental methods of determining fracture toughness of fiber reinforced polymer composites under various loading conditions, Journal of Minerals and Materials Characterization & Engineering 10(13), pp. 1263-1275. DOI: 10.4236/jmmce.2011.1013099 [7] Rikards, R. (1998). Investigation of Mixed mode I/II interlaminar fracture toughness of laminated composites by using a CTS type specimen, Engineering Fracture Mechanics, 61, pp. 325-342. DOI: 10.1016/S0013-7944(98)00068-X. [8] Laffan, M.J., Pinho, S.T., Robinson, P., McMilllan, A.J. (2011). Translaminar fracture toughness: The critical notch tip radius of 0° plies in CFRP, Composites Science and Technology, 72, pp. 97-102. DOI: 10.1016/j.compscitech.2011.10.006 [9] Swolfs, Y., Geboes, Y., Gorabatikh, L., Pinho, S. T. (2017). The importance of translaminar fracture toughness for the penetration impact behaviour of woven carbon/glass hybrid composites, Composites Part A, 103, pp. 1-8. DOI: 10.1016/j.compositesa.2017.09.009 [10] Desai, A., Sharanaprabhu, C.M., Kudari, S.K. (2018). Experimental Investigation on Critical Energy Release Rate for an Asymmetric Four Point Bending, National Conference on advanced research in science, engineering and management, PESITM, Shivamogga pp. 395-398. [11] Desai, A., Sharanaprabhu, C.M., Kudari, S.K. (2019). Experimental Investigation on the effects of fiber orientation on mixed mode I/II translaminar fracture toughness for glass-epoxy composites, Advances in polymer composites, Mechanics, Characterization and Applications, AIP Conf. Proc.2057, 020010. DOI: 10.1063/1.5085581. [12] Naghipour, P., Bartsch, M., Chernova, L., Hausmann, J., Voggenreiter, H. (2010). Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: Numerical and experimental investigations, Materials Science and Engineering A, 527 pp. 509–517. DOI: 10.1016/j.msea.2009.07.069. [13] Shahani, A.R., Tabatabaei, S.A. (2009). Effect of T-stress on the fracture of a four point bend specimen, Materials and Design, 30, pp. 2630-2635. DOI: 10.1016/j.matdes.2008.10.031 [14] Murakami ,Y. Stress Intensity factors handbook, Pergamon Press, New York (1987) A

RkJQdWJsaXNoZXIy MjM0NDE=