Issue 53
H. Fawzy et al, Frattura ed Integrità Strutturale, 53 (2020) 353-371; DOI: 10.3221/IGF-ESIS.53.28 370 [8] Wang, H.Y., Chen, B.T. and Wu, Y.W. (2013). A Study of The Fresh Properties of Controlled Low-Strength Rubber Lightweight Aggregate Concrete (CLSRLC), Construction and Building Materials, 41, 526-531. DOI: 10.1016/j.conbuildmat.2012.11.113. [9] Yung, W.H., Yung, L.C. and Hua, L.H. (2013). A Study of the Durability Properties of Waste Tire Rubber Applied to Self-Compacting Concrete, Construction and Building Materials, 41, 665-672. DOI: 10.1016/j.conbuildmat.2012.11.019. [10] Xue, J. and Shinozuka M., (2013). Rubberized Concrete: A Green Structural Material with Enhanced Energy- Dissipation Capability, Construction and Building Materials, 42, 196-204. DOI: 10.1016/ j.conbuildmat.2013.01.005. [11] Shu, X. and Huang, B., (2014). Recycling of Waste Tire Rubber in Asphalt and Portland Cement Concrete: An Overview, Construction and Building Materials, 67, 217-224. DOI: 10.1016/j.conbuildmat. 2013.11.027. [12] Aiello, M.A. and Leuzzi, F. (2010). Waste Tyre Rubberized Concrete: Properties at Fresh and Hardened State, Waste Management, 30(8), 1696-1704. DOI: 10.1016/j.wasman.2010.02.005. [13] Correia, J., Marques, A.M., Pereira, C.M.C., Brito, J., (2012). Fire Reaction Properties of Concrete Made with Recycled Rubber Aggregate, Fire and Materials, 36(2), 139-152. DOI: 10.1002/fam.1094. [14] Marques, A., Correia, J. and De Brito, J. (2013). Post-Fire Residual Mechanical Properties of Concrete Made with Recycled Rubber Aggregate, Fire Safety Journal, 58, 49-57. DOI: 10.1016/j. firesaf.2013.02.002. [15] Mousa, M.I., (2017). Effect of Elevated Temperature on the Properties of Silica Fume and Recycled Rubber-Filled High Strength Concretes (RHSC), HBRC Journal, 13(1), 1-7. DOI: 10.1016 /j.hbrcj.2015.03.002. [16] Subhash C. Y., Jishnu W. and Ramesh, P. (2015). Strength Loss Contributions During Stages of Heating, Retention and Cooling Regimes for Concretes Advances in Materials Research, 4(1), 13-22. DOI: 10.12989/amr.2015.4.2.013. [17] Hernndez-Olivares, F. and Barluenga, G. (2004). Fire Performance of Recycled Rubber-Filled High-Strength Concrete, Cement and Concrete Research, 34(1),109-117. DOI: 10.1016/S0008-8846(03)00253-9. [18] Guelmine, L., Hadjab, H. and Benazzouk, A. (2016). Effect of Elevated Temperatures on Physical and Mechanical Properties of Recycled Rubber Mortar, Construction and Building Materials, 126, 77-85. DOI: 10.1016/j.conbuildmat.2016.09.018. [19] Roeder, C.W., Cameron, B. and Brown, C.B., (1999). Composite Action in Concrete Filled Tubes, Journal of structural engineering, 125(5), 477-484. DOI: 10.1061/(ASCE)0733-9445(1999)125:5(477). [20] Parsley, M. and Yura, J. (2000). Push-out Behavior of Rectangular Concrete-Filled Steel Tubes, Special Publication,196, 87-108. [21] Nezamian, A., Al-Mahaidi, R. and Grundy, P., (2006). Bond Strength of Concrete Plugs Embedded in Tubular Steel Piles under Cyclic Loading, Canadian Journal of Civil Engineering, 33(2), 111-125. DOI: 10.1139/l05-091. [22] De Nardin, S. and El Debs, A., (2007). Shear Transfer Mechanisms in Composite Columns: an Experimental Study, Steel and Composite Structures, 7(5), 377-390. DOI: 10.12989/scs.2007.7.5.377 [23] Aly, T., Elchalakani, M., Thayalan, P.Patnaikuni,I, (2010). Incremental Collapse Threshold for Pushout Resistance of Circular Concrete Filled Steel Tubular Columns, Journal of Constructional Steel Research, 66(1), 11-18. DOI: 1.1016/j.jcsr.2009.08.002 [24] Liu, Z.Y. (2012). Experiment Study on Interfacial Normal Bond Strength of Concrete Filled Steel Tube, Advanced Materials Research. 947-954 DOI: 10.4028 /www.scientific.net/AMR.594-597.947 [25] Lihong, X. and Shaohuai, C. (1996). Bond Strength at the Interface of Concrete-filled Steel Tube Columns, Building Science, 3. [26] Qu, X., Chen, Z., Nethercot, D.A., Gardner, L. and Theofanous, M., (2015). Push-out Tests and Bond Strength of Rectangular CFST Columns, Steel and Composite Structures, 19(1), 21 - 41. [27] Hunaiti, Y.M., (1991). Bond Strength in Battened Composite Columns Journal of Structural Engineering, 117(3), 699- 714. DOI: 10.1061/(ASCE)0733-9445(1991)117:3(699). [28] Tao, Z., Han, L.H, Uy, B. and X., (2011). Post-Fire Bond Between the Steel Tube and Concrete in Concrete-Filled Steel Tubular Columns, Journal of Constructional Steel Research, 67(3), 484-496. DOI: 10.1016/j.jcsr.2010.09.006. [29] ECP: ECP-203: (2007). Egyptian code for design and construction of reinforced concrete structures, Housing and Building National Research Center. Ministry of Housing, Utilities and Urban Planning, Cairo. [30] Siddique, R. and Naik, T.R. (2004). Properties of Concrete Containing Scrap-Tire Rubber–An Overview, Waste management, 24(6),563-569. DOI: 10.1016/j.wasman.2004.01.006. [31] Ganjian, E., Khorami, M. and Maghsoudi, A.A. (2009). Scrap-Tyre-Rubber Replacement for Aggregate and Filler in Concrete, Construction and building materials, 23(5), 1828-1836. DOI: 10.1016/ j.conbuildmat.2008.09.020. [32] [32] Aslani, F., (2015). Mechanical Properties of Waste Tire Rubber Concrete, Journal of Materials in Civil Engineering, 28(3) 04015152. DOI: 10.1061/(ASCE)MT.1943-5533.0001429.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=