Issue 53

A. Chatzigeorgiou et alii, Frattura ed Integrità Strutturale, 53 (2020) 306-324; DOI: 10.3221/IGF-ESIS.53.24 324 http://www.ansys.stuba.sk/html/guide_55/g-str/gstr10.htm. [13] Giner, E., Sukumar, N., Tarancón, J.E., Fuenmayor, F.J. (2009). An Abaqus implementation of the extended finite element method, Eng. Fract. Mech., 76(3), pp. 347–368, DOI: 10.1016/j.engfracmech.2008.10.015. [14] Abaqus/CAE User’s Manual. Available at: http://130.149.89.49:2080/v6.11/books/usi/default.htm?startat=pt04ch31s02.html. [15] DMAP Programmer’s Guide. (2014). Available at: https://docs.plm.automation.siemens.com/data_services/resources/nxnastran/10/help/en_US/tdocExt/pdf/dmap. pdf. [16] Kuna, M. (2013). Finite Elements in Fracture Mechanics, 201. [17] Henshell, R.D., Shaw, K.G. (1975). Crack tip finite elements are unnecessary, Int. J. Numer. Methods Eng., 9(3), pp. 495–507, DOI: 10.1002/nme.1620090302. [18] Erdogan, F., Sih, G.C. (1963). On the Crack Extension in Plates Under Plane Loading and Transverse Shear, J. Basic Eng., 85(4), pp. 519–525, DOI: 10.1115/1.3656897. [19] Tanaka, K. (1974). Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Eng. Fract. Mech., 6(3), pp. 493–498, DOI: 10.1016/0013-7944(74)90007-1. [20] Richard, H.A. (1985). Bruchvorhersagen bei überlagerter normal- und Schubbeanspruchung von Rissen., Düsseldorf. [21] Díaz Rodríguez, J.G., Nazaré Marques, L.F., Guzmán, R.E. (2018). Mixed-Mode stress intensity factors for tubes under pure torsion loading, Key Eng. Mater., 774 KEM(October), pp. 373–378, DOI: 10.4028/ www.scientific.net/KEM.774.373. [22] Mróz, K.P., Mróz, Z. (2010). On crack path evolution rules, Eng. Fract. Mech., 77(11), pp. 1781–807, DOI: 10.1016/j.engfracmech.2010.03.038. [23] Yang, Y., Vormwald, M. (2017). Fatigue crack growth simulation under cyclic non-proportional mixed mode loading, Int. J. Fatigue, 102, pp. 37–47, DOI: 10.1016/j.ijfatigue.2017.04.014. [24] Paris, P.C., Gomez, M.P., Anderson, W.E. (1961). A Rational Analytic Theory of Fatigue, Trend Eng., pp. 9–14. [25] Forman, R.G., Keary, V.E., Eagle, R.M. (1967). Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures, J. Basic Eng., 89, pp. 459–464. [26] Forman, R.G., Mettu, S.R. (1992). Behavior of surface and corner cracks subjected to tensile and bending loads in a Ti-6Al-4V alloy, Fract. Mech. Twenty-Second Symp., I, pp. 519–546. [27] Hannemann, R., Köster, P., Sander, M. (2017). Investigations on crack propagation in wheelset axles under rotating bending and mixed mode loading, Procedia Struct. Integr., 5, pp. 861–868, DOI: 10.1016/j.prostr.2017.07.104. [28] Teague, C. (2016). Introduction to FEMAP API programming, 949. [29] Murakami, Y. (1987). Stress intensity factors handbook, 1–5, Pergamon Press. [30] Wu, S., Ingraffea, A.R., Grigoriu, M. (1990). Probabilistic Fracture Mechanics a Validation of Predictive Capability, pp. 155. [31] Lu, Z., Xu, J., Wang, L., Zhang, J., Liu, Y. (2014). Curvilinear Fatigue Crack Growth Simulation and Validation under Constant Amplitude and Overload Loadings, ASCE, pp. 11, DOI: 10.1061/(ASCE)AS.1943-5525.0000337. [32] Miranda, A.C.O., Meggiolaro, M.A., Castro, J.T.P., Martha, L.F., Bittencourt, T.N. (2003). Fatigue life and crack path predictions in generic 2D structural components, Eng. Fract. Mech., 70(10), pp. 1259–1279, DOI: 10.1016/S0013-7944(02)00099-1. [33] Rice, J.R. (1968). A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech., 35(2), pp. 379, DOI: 10.1115/1.3601206. [34] Diaz Rodriguez, J.G. (2018). Linear elastic fracture mechanics analysis of fatigue crack growth under complex loading using the Digital Image Correlation technique, pp. 178, DOI: 10.17771/PUCRio.acad.36283. [35] Rozumek, D., MacHa, E. (2009). A survey of failure criteria and parameters in mixed-mode fatigue crack growth, Mater. Sci., 45(2), pp. 190–210, DOI: 10.1007/s11003-009-9179-2. [36] Maligno, A., Citarella, R., Silberschmidt, V. (2017). Retardation effects due to overloads in aluminium ‐ alloy aeronautical components, Fatigue Fract. Eng. Mater. Struct., DOI: 10.1111/ffe.12591. [37] Purnowidodo, A., Soenoko, R., Choiron, M.A. (2016). The effect of hold time of overload on crack propagation behavior emerging from notch root, FME Trans., 44(1), pp. 50–57, DOI: 10.5937/fmet1601050P.

RkJQdWJsaXNoZXIy MjM0NDE=