Issue 53

A. Chatzigeorgiou et alii, Frattura ed Integrità Strutturale, 53 (2020) 306-324; DOI: 10.3221/IGF-ESIS.53.24 323 n fatigue parameter in the Paris-Erdogan, Forman, and Forman-Mettu law N number of cycles p fatigue parameter in the Forman-Mettu law q fatigue parameter in the Forman-Mettu law R stress ratio u 1 Displacement at the x-direction of the local coordinate system placed at the tip of the crack u 2 Displacement at the y-direction of the local coordinate system placed at the tip of the crack u 3 Displacement at the z-direction of the local coordinate system placed at the tip of the crack Δσ stress amplitude ΔΚ cyclic stress intensity factor range ΔΚ th cyclic stress intensity factor range threshold θ the angle between the initial direction and the direction of the new crack growth increment σ m mean stress level σ max maximum stress level σ min minimum stress level v Poisson’s ratio ASTM American society of testing materials COD crack opening displacement CTE crack tip elements FEA finite element analysis LEFM linear elastic fracture mechanics MSS maximum shear stress MTS maximum tangential stress SED Strain energy density criterion SIF stress intensity factor R EFERENCES [1] Giannella, V., Perrella, M., Citarella, R. (2017). Efficient FEM-DBEM coupled approach for crack propagation simulations, Theor. Appl. Fract. Mech., 91, pp. 76-85, DOI: 10.1016/j.tafmec.2017.04.003. [2] Citarella, R. (2011). MSD crack propagation by DBEM on a repaired aeronautic panel, Adv. Eng. Softw., 42(10), pp. 887-901, DOI: 10.1016/j.advengsoft.2011.02.014. [3] Benedetti, I., Milazzo, A., Aliabadi, M.H. (2009). A fast dual boundary element method for 3D anisotropic crack problems, Int. J. Numer. Methods Eng., 80(10), pp. 1356-1378, DOI:10.1002/nme.2666. [4] Theocaris, P.S., Tsamasphyros, G., Theotokoglou, E.E. (1984). An alternating coupling of finite elements and singular integral equations for the solution of branched cracks in finite sheets, Eng. Fract. Mech., 20(4), pp. 583-589, DOI: 10.1016/0013-7944(84)90033-X. [5] Theocaris, P.S., Tsamasphyros, G., Theotokoglou, E.E. (1982). A combined integral-equation and finite-element method for the evaluation of stress intensity factors, Comput. Methods Appl. Mech. Eng., 31(2), pp. 117-127, DOI: 10.1016 /0045-7825(82)90019-6 . [6] Lund, J.R., Byrne, J.P. (2001). Leonardo Da Vinci’s tensile strength tests: Implications for the discovery of engineering mechanics, Civ. Eng. Environ. Syst., 18(3), pp. 243–250, DOI: 10.1080/02630250108970302. [7] Rossmanith, H.P. (1999). Fracture mechanics and materials testing : forgotten pioneers of the early 20th century, Mater. Struct., (April), pp. 781–797. [8] Da Vinci, L. (n.d.). Códice Atlántico, pp. 435. [9] Cai, Z., Hu, X., Yao, W. (2018). Numerical study on bi-material interface crack using symplectic analytical singular element, Eng. Fract. Mech., 199(May), pp. 308–326, DOI: 10.1016/j.engfracmech.2018.05.033. [10] Tchoffo Ngoula, D., Madia, M., Beier, H.T., Vormwald, M., Zerbst, U. (2018). Cyclic J-integral: Numerical and analytical investigations for surface cracks in weldments, Eng. Fract. Mech., 198, pp. 24–44, DOI: 10.1016/j.engfracmech.2017.06.023. [11] Madenci, E., Guven, I. (2006). The Finite Element Method and Applications in Engineering Using ANSYS, Springer US. [12] (2004). ANSYS Structural Analysis Guide. Chapter 10: Fracture Mechanics. Available at:

RkJQdWJsaXNoZXIy MjM0NDE=