Issue 53

A. Namdar, Frattura ed Integrità Strutturale, 53 (2020) 285-294; DOI: 10.3221/IGF-ESIS.23.22 293 [2] Namdar, A. and Feng, X. (2014). Evaluation of safe bearing capacity of soil foundation by using numerical analysis method, Fract. Struct. Int., 8 (30), pp. 138-144. DOI: 10.3221/IGF-ESIS.30.18. [3] Namdar, A. and Pelko, M. K. (2009). Numerical analysis of soil bearing capacity by changing soil characteristics, Fract. Struct. Int., 3 (10), pp. 38-42. DOI: 10.3221/IGF-ESIS.10.05. [4] Namdar, A. and Nusrath, A. (2010). Tsunami numerical modeling and mitigation, Fract. Struct. Int., 4 (12), pp. 57-62. DOI: 10.3221/IGF-ESIS.12.06. [5] Namdar, A. (2016). A numerical investigation on soil-concrete foundation interaction, Proc. Struct. Integ., 2, pp. 2803-2809. DOI: 10.1016/j.prostr.2016.06.351. [6] Namdar, A. and Gopalakrishna, G. S. (2008). Seismic mitigation of embankment by using dense zone in subsoil, Emir. J. Eng. Res., 3(13), pp. 55–61. [7] Skempton, A.W. (1951). The bearing capacity of clays, Build. Res. Congr. 1, pp. 180–189. [8] Pengpeng, N., Yaolin, Y. and Songyu, L. (2019). Bearing capacity of composite ground with soil-cement columns under earth fills: Physical and numerical modelling, Soils Found., 59, pp. 2206–2219. DOI: 10.1016/j.sandf.2019.12.004. [9] Horpibulsuk, S., Phetchuay, C., Chinkulkijniwat, A. and Cholaphatsorn, A. (2013). Strength development in silty clay stabilized with calcium carbide residue and fly ash, Soils Found., 53(4), pp. 477–486. DOI: 10.1016/j.sandf.2013.06.001. [10] Vichan, S. and Rachan, R. (2013). Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash, Soils Found., 53 (2), pp. 272–281. DOI: 10.1016/j.sandf.2013.02.007. [11] Kim, B., Prezzi, M. and Salgado, R. (2005). Geotechnical properties of fly and bottom ash mixtures for use in highway embankments, J. Geotech. Geoenviron. Eng., 131(7), pp. 914–924. [12] Esmaeilpour Shirvani, N., Taghavi Ghalesari, N., Khaleghnejad Tabari, M. and Janalizadeh Choobbasti, A. (2019). Improvement of the engineering behavior of sandclay mixtures using kenaf fiber reinforcement, Transp. Geotech., 19, pp. 1–8. DOI: 10.1016/j.trgeo.2019.01.004. [13] Estabragh, A.R., Rafatjo, H. and Javadi, A.A. (2014). Treatment of an expansive soil by mechanical and chemical techniques, Geosynth. Int., 21, pp. 233–243. DOI: 10.1680/gein.14.00011. [14] Namdar, A. (2010). Mineralogy in geotechnical engineering, J. Eng. Sci. Tech. Rev., 3 (1), pp. 108-110. [15] Namdar, A. (2012). Natural minerals mixture for enhancing concrete compressive strength, Fract. Struct. Int., 6 (22), pp. 26- 30. DOI: 10.3221/IGF-ESIS.22.04. [16] Muhammad, N., Zakaria, I. and Namdar, A. (2013). Modification of kaolin mineralogy and morphology by heat treatment and possibility of use in geotechnical engineering, Int. J. Geomater., 5(2), pp. 685-689. DOI:10.21660/2013.10.3217. [17] Huffman, P. J., Ferreira, J., Correia, J., De Jesus, A., Lesiuk, G., Berto, F., Fernandez-Canteli, A. and Glinka, G. (2017). Fatigue crack propagation prediction of a pressure vessel mild steel based on a strain energy density model, Fract. Struct. Int., 11(42), pp. 74-84. DOI: 10.3221/IGF-ESIS.42.09 . [18] Funari, M. F., Greco, F., Lonetti, P. and Spadea, S. (2018). A numerical model based on ALE formulation to predict crack propagation in sandwich structures, Fract. Struct. Int., 13(47), pp. 277-293. DOI: 10.3221/IGF-ESIS.47.21. [19] Tzamtzis, A. and Kermanidis, A. T. (2015). Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties, Fract. Struct. Int., 10(35), pp. 396-404. DOI: 10.3221/IGF-ESIS.35.45 [20] Caporale, A. and Luciano, R. (2014). A micromechanical four-phase model to predict the compressive failure surface of cement concrete, Fract. Struct. Int., 8(29), pp. 19-27. DOI: 10.3221/IGF-ESIS.29.03. [21] Contrafatto, L. and Cosenza, R. (2014). Prediction of the pull-out strength of chemical anchors in natural stone, Fract. Struct. Int., 8(29), pp. 196-208. DOI: 10.3221/IGF-ESIS.29.17. [22] Namdar, A. (2020). The application of soil mixture in concrete footing design using the linear regression model, Mat Design Process Comm., e179. DOI: 10.1002/mdp2.179 [23] Navidi, W., Statistics for Engineers and Scientists, 3rd ed, (2011). Published by McGraw-Hill. [24] Namdar, A. and Dong, Y. (2020). The embankment-subsoil displacement mechanism, Mat. Des. Process Comm., e155. DOI: 10.1002/mdp2.155. [25] Fernandino, DO., Tenaglia, N., Di Cocco, V., Boeri, RE. and Iacoviello, F. (2020). Relation between microstructural heterogeneities and damage mechanisms of a ferritic spheroidal graphite cast iron during tensile loading, Fat. Fract. Eng. Mater. Struct., 6(43), pp. 1262-1273. DOI: 10.1111/ffe.13221. [26] D'Angela, D., Ercolino, M., Bellini, C., Di Cocco, V. and Iacoviello, F. (2020). Characterisation of the damaging micromechanisms in a pearlitic ductile cast iron and damage assessment by acoustic emission testing, Fat. Fract. Eng. Mater. Struct., 5(43), pp. 1038-1050. DOI: 10.1111/ffe.13214. [27] D'Angela, D., Ercolino, M., Bellini, C., Di Cocco, V. and Iacoviello, F. (2020). Analysis of acoustic emission entropy for damage assessment of pearlitic ductile cast irons, Mat. Des. Process Comm., pp. 1-5. DOI: 10.1002/mdp2.158. [28] Fernandino, D. O., Di Cocco, V., Tenaglia, N., Bellini, C., Iacoviello, F. and Boeri, R. E. (2019). Microstructural damage evaluation of ferritic-ausferritic spheroidal graphite cast iron, Fract. Struct. Int., 14(51), pp. 477-485. DOI: 10.3221/IGF-ESIS.51.36.

RkJQdWJsaXNoZXIy MjM0NDE=