Issue 52
W. N. Bouzitouna et alii, Frattura ed Integrità Strutturale, 52 (2020) 256-268; DOI: 10.3221/IGF-ESIS.52.20 267 The singularity at the bottom of the notch removed by the piercing provides additional relaxation to the damaged structure. The hybrid repair leads to the decrease of the COD parameter and consequently to decrease the size of the plasticized zone at the bottom of the crack. Finite element analyzes have shown that the presence of the two-side bonded composite can reduce significantly the maximum peel stress at the interface (plate/adhesive), which helps attain better repair performance. R EFERENCES [1] Baker, A. A., Rose, L. R. F. and Jones, R. (eds) (2002) Advances in the bonded composite repair of metallic aircraft structure. 1st ed. Amsterdam ; Boston: Elsevier. [2] Song, P. S., Hwang, S. and Shin, C. S. (1998). Effect of artificial closure materials on crack growth retardation, Engineering Fracture Mechanics, 60(1), pp. 47–58. DOI: 10.1016/S0013-7944(97)00180-X. [3] Fu, Z., Ji, B., Xie, S. and Liu, T. (2017). Crack stop holes in steel bridge decks: Drilling method and effects, Journal of Central South University, 24(10), pp. 2372–2381. DOI: 10.1007/s11771-017-3649-8. [4] Murdani, A., Makabe, C., Saimoto, A., Irei, Y. and Miyazaki, T. (2008). Stress concentration at stop-drilled holes and additional holes, Engineering Failure Analysis, 15(7), pp. 810–819. DOI: 10.1016/j.engfailanal.2007.11.002. [5] Ghfiri, R., Shi, H.-J., Guo, R. and Mesmacque, G. (2000). Effects of expanded and non-expanded hole on the delay of arresting crack propagation for aluminum alloys, Materials Science and Engineering: A, 286(2), pp. 244–249. DOI: 10.1016/S0921-5093(00)00805-4. [6] Goto, M., Miyagawa, H. and Nisitani, H. (2007). Crack growth arresting property of a hole and Brinell-type dimple, Fatigue & Fracture of Engineering Materials & Structures, 19(1), pp. 39–49. DOI: 10.1111/j.1460-2695.1996.tb00930.x. [7] Kirkhope, K. J., Bell, R., Caron, L., Basu, R. I. and Ma, K.-T. (1999). Weld detail fatigue life improvement techniques. Part 1: review, Marine Structures, 12(6), pp. 447–474. DOI: 10.1016/S0951-8339(99)00013-1. [8] Rodriguez-Sanchez, J. (2004). Application of short repairs for fatigue life extension, International Journal of Fatigue, 26(4), pp. 413–420. DOI: 10.1016/j.ijfatigue.2003.07.002. [9] Wu, H., Benseddiq, N. and Imad, A. (2010). Fracture toughness prediction of a valve body: Numerical analysis, Engineering Failure Analysis, 17(1), pp. 135–142. DOI: 10.1016/j.engfailanal.2009.04.010. [10] Elber, W. (1971). The Significance of Fatigue Crack Closure, in Rosenfeld, M. (ed.) Damage Tolerance in Aircraft Structures. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, DOI: 10.1520/STP26680S. [11] Newman, J. (1976). A Finite-Element Analysis of Fatigue Crack Closure’, in Rice, J. and Paris, P. (eds) Mechanics of Crack Growth. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International. DOI: 10.1520/STP33952S. [12] Newman, J. and Elber, W. (eds) (1988) Mechanics of Fatigue Crack Closure. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International. DOI: 10.1520/STP982-EB. [13] Robin, C., Louah, M. and Pluvinage, G. (1983). Influence of an overload on the fatigue crack growth in steels, Fatigue & Fracture of Engineering Materials and Structures, 6(1), pp. 1–13. DOI: 10.1111/j.1460-2695.1983.tb01135.x. [14] Smith, D. J., Bourke, M. A. M., Hodgson, A. P., Webster, G. A. and Webster, P. J. (1992). Interpretation of residual stress distributions in previously loaded cracked beams, The Journal of Strain Analysis for Engineering Design, 27(2), pp. 77–83. DOI: 10.1243/03093247V272077. [15] van Leeuwen, H. P., Meulman, A. E. and Schra, L. (1970) The Repair of Fatigue Cracks in Low-alloy Steel Sheet. [16] Eggwerts, S., Garfall, L. and Wallgren, G. (1969). Review of some Swedish investigations on fatigue during the period April 1967 to March 1969. [17] Fu, M. and Mallick, P. K. (2001). Fatigue of hybrid (adhesive/bolted) joints in SRIM composites, International Journal of Adhesion and Adhesives, 21(2), pp. 145–159. DOI: 10.1016/S0143-7496(00)00047-6. [18] Moroni, F., Pirondi, A. and Kleiner, F. (2010). Experimental analysis and comparison of the strength of simple and hybrid structural joints’, International Journal of Adhesion and Adhesives, 30(5), pp. 367–379. DOI: 10.1016/j.ijadhadh.2010.01.005. [19] Venkateswarlu, S. V. (2013). Modelling and Analysis of Hybrid Composite Joint Using Fem in Ansys, IOSR Journal of Mechanical and Civil Engineering, 6(6), pp. 1–6. DOI: 10.9790/1684-0660106. [20] Pluvinage, G. and Gjonaj, M. (2001) Notch Effects in Fatigue and Fracture. DOI:10.1007/978-94-010-0880-8. [21] Hosseini-Toudeshky, H., Saber, M. and Mohammadi, B. (2008). Mixed-mode 3-D crack propagation of repaired thin aluminum panels using single-side composite patches, International Journal of Fracture, 153(2), pp. 105–116. DOI: 10.1007/s10704-008-9303-6.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=