Issue 51
K. Bahram et alii, Frattura ed Integrità Strutturale, 51 (2020) 467-476; DOI: 10.3221/IGF-ESIS.51.35 475 [2] Benachour, M., Benguediab, M., and Benachour, N. (2013). Notch fatigue crack initiation and propagation life under constant amplitude loading through residual stress field, in Advanced Materials Research,682(2013) , pp. 17-24. DOI: 10.4028 /www.scientific.net/AMR.682.17. [3] Mahmoud, S. and Lease, K. (2004). Two-dimensional and three-dimensional finite element analysis of critical crack-tip- opening angle in 2024-T351 aluminum alloy at four thicknesses, Engineering fracture mechanics, 71(9), pp. 1379-1391. DOI: 10.1016/S0013-7944(03)00167-X. [4] Papasidero, J., Doquet, V., and Mohr, D. (2015). Ductile fracture of aluminum 2024-T351 under proportional and non- proportional multi-axial loading: Bao–Wierzbicki results revisited, International Journal of Solids and Structures, 69 (70), pp. 459-474, DOI: 10.1016/j.ijsolstr.2015.05.006. [5] Fitzka, M. and Mayer, H. (2016). Constant and variable amplitude fatigue testing of aluminum alloy 2024-T351 with ultrasonic and servo-hydraulic equipment, International Journal of Fatigue, 91(2), pp. 363-372, DOI: 10.1016/j.ijfatigue.2015.08.017. [6] Henkel, S., Liebelt, E., Biermann, H. and Ackermann, S., (2015). Crack growth behavior of aluminum alloy 6061 T651 under uniaxial and biaxial planar testing condition, Frattura ed Integrità Strutturale, 9(34), DOI: 10.3221/IGF-ESIS.34.52. [7] Moreno, B., Martin, A., Lopez-Crespo, P., Zapatero, J., and Dominguez, J., (2016). Estimations of fatigue life and variability under random loading in aluminum Al-2024T351 using strip yield models from NASGRO, International Journal of Fatigue, 91(2), pp. 414-422, DOI: 10.1016/j.ijfatigue.2015.09.031. [8] Wang, D.Q., Zhu, M.L. and Xuan, F.Z. (2017). Crack tip strain evolution and crack closure during overload of a growing fatigue crack, Frattura ed Integrità Strutturale,11(41), pp. 143-148, DOI: 10.3221/IGF-ESIS.41.20. [9] Gates, N.R., Fatemi, A., Iyyer, N. and Phan, N. (2016). Fatigue crack growth behavior under multiaxial variable amplitude loading, Frattura ed Integrità Strutturale, 10(37), pp. 166-172, DOI: 10.3221/IGF-ESIS.37.23. [10] Rodopoulos, C.A. and Kermanidis, A.T. (2007). Understanding the effect of block overloading on the fatigue behaviour of 2024-T351 aluminium alloy using the fatigue damage map, International journal of fatigue,29(2), pp. 276-288, DOI: 10.1016/j.ijfatigue.2006.03.008. [11] Maligno, A.R, Citarella, R., and Silberschmidt, V.V. (2017). Retardation effects due to overloads in aluminium - alloy aeronautical components, Fatigue & Fracture of Engineering Materials & Structures, 40(9), pp. 1484-1500, DOI: 10.1111/ffe.12591. [12] Zhang, L., Gao, Q., Ma, S. and Tong, D. (2018). Analysis of Crack Growth Retardation after Single Overload Based on FEM Simulation and CORPUS Model Prediction, in IOP Conference Series: Materials Science and Engineering . 28– 29 December 2017, Shanghai, China. [13] Elber, W. (1971). The significance of fatigue crack closure, in Damage tolerance in aircraft structures, ed: ASTM International, pp230-242. DOI: 10.1520/STP26680S. [14] Wheeler, O.E. (1972). Spectrum loading and crack growth, Journal of basic engineering, 94(1), pp. 181-186, DOI: 10.1115/1.3425362. [15] Willenborg, J., Engle, R. and Wood, H. (1971). A crack growth retardation model using an effective stress concept, Air Force Flight Dynamics Lab Wright-Patterson. DOI: 10.0000 /apps.dtic.mil/ADA956517. [16] Hutchinson, J. (1968) Singular behaviour at the end of a tensile crack in a hardening material, Journal of the Mechanics and Physics of Solids,16(1), pp. 13-31, DOI: 10.1016/0022-5096(68)90014-8. [17] Rice, J., (1967) Mechanics of crack tip deformation and extension by fatigue, in Fatigue crack propagation, ed: ASTM International, pp.247-311, DOI: 10.1520/STP47234S. [18] Rice, J. and Rosengren, G.F., (1968) Plane strain deformation near a crack tip in a power-law hardening material, Journal of the Mechanics and Physics of Solids, 16(1), pp. 1-12, DOI: 10.1016/0022-5096(68)90013-6. [19] Forman, R.G. and Mettu, S.R. (1990). Behavior of surface and corner cracks subjected to tensile and bending loads in Ti-6Al-4V alloy, NASA Technical Memorandum ID:19910009960. [20] Newman, J.J. (1984) A crack opening stress equation for fatigue crack growth, International Journal of fracture, 24(4), pp. 131-135, DOI: 10.1007/BF00020751. N OMENCLATURE R : Stress ratio. eff R : Effective load ratio.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=