Issue 51
M. Cauwels et alii, Frattura ed Integrità Strutturale, 51 (2020) 449-458; DOI: 10.3221/IGF-ESIS.51.33 458 [34] Kheradmand, N., Johnsen, R., Olsen, J.S., Barnoush, A. (2016). Effect of hydrogen on the hardness of different phases in super duplex stainless steel, Int. J. Hydrogen Energy, 41(1), pp. 704–712, DOI: 10.1016/j.ijhydene.2015.10.106. [35] Barnoush, A., Zamanzade, M., Vehoff, H. (2010). Direct observation of hydrogen-enhanced plasticity in super duplex stainless steel by means of in situ electrochemical methods, Scr. Mater., 62(5), pp. 242–245, DOI: 10.1016/j.scriptamat.2009.11.007. [36] Martin, M.L., Fenske, J.A., Liu, G.S., Sofronis, P., Robertson, I.M. (2011). On the formation and nature of quasi- cleavage fracture surfaces in hydrogen embrittled steels, Acta Mater., 59(4), pp. 1601–6, DOI: 10.1016/j.actamat.2010.11.024. [37] Kerlins, V. (1998).Modes of fracture. ASM handbook Volume 12: Fractography, ASM International, p. 857. [38] Lynch, S.P. (1984). A fractographic study of gaseous hydrogen embrittlement and liquid-metal embrittlement in a tempered-martensitic steel, Acta Metall., 32(1), pp. 79–90, DOI: 10.1016/0001-6160(84)90204-9. [39] Turnbull, A., Hutchings, R.B. (1994). Analysis of hydrogen atom transport in a two-phase alloy, Mater. Sci. Eng. A, 177(1–2), pp. 161–171, DOI: 10.1016/0921-5093(94)90488-X. [40] Claeys, L., Depover, T., De Graeve, I., Verbeken, K. (2019). Electrochemical Hydrogen Charging of Duplex Stainless Steel, Corrosion, 75(8), pp. 880–887, DOI: 10.5006/2959. [41] Zheng, W., Hardie, D. (1991). Effect of structural orientation on the susceptibility of commercial duplex stainless steels to hydrogen embrittlement, Corrosion, 47(10), pp. 792–799, DOI: 10.5006/1.3585190. [42] Oltra, R., Bouillot, C., Magnin, T. (1996). Localized hydrogen cracking in the austenitic phase of a duplex stainless steel, Scr. Mater., 35(9), pp. 1101–1105, DOI: 10.1016/1359-6462(96)00293-X. [43] Magnin, T., Chambreuil, A., Bayle, B. (1996). The corrosion-enhanced plasticity model for stress corrosion cracking in ductile fcc alloys, Acta Mater., 44(4), pp. 1457–1470, DOI: 10.1016/1359-6454(95)00301-0. [44] Claeys, L., Depover, T., De Graeve, I., Verbeken, K. (2019). Hydrogen-assisted cracking in 2205 duplex stainless steel: initiation, propagation and interaction with deformation-induced martensite, Mater. Sci. Eng. A, under review. [45] Koyama, M., Akiyama, E., Sawaguchi, T., Raabe, D., Tsuzaki, K. (2012). Hydrogen-induced cracking at grain and twin boundaries in an Fe-Mn-C austenitic steel, Scr. Mater., 66(7), pp. 459–462, DOI: 10.1016/j.scriptamat.2011.12.015. [46] Laureys, A., Van den Eeckhout, E., Petrov, R., Verbeken, K. (2017). Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging, Acta Mater., 127, pp. 192–202, DOI: 10.1016/j.actamat.2017.01.013. [47] Tiegel, M.C., Martin, M.L., Lehmberg, A.K., Deutges, M., Borchers, C., Kirchheim, R. (2016). Crack and blister initiation and growth in purified iron due to hydrogen loading, Acta Mater., 115, pp. 24–34, DOI: 10.1016/j.actamat.2016.05.034.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=