Issue 51
M. Cauwels et alii, Frattura ed Integrità Strutturale, 51 (2020) 449-458; DOI: 10.3221/IGF-ESIS.51.33 457 De Mille Campbell Memorial Lecture), Metallogr. Microstruct. Anal., 5(6), pp. 557–569, DOI: 10.1007/s13632-016-0319-4. [11] Oriani, R.A., Josephic, P.H. (1974). Equilibrium aspects of hydrogen-induced cracking of steels, Acta Metall., 22(9), pp. 1065–1074, DOI: 10.1016/0001-6160(74)90061-3. [12] Birnbaum, H.K., Sofronis, P. (1994). Hydrogen-enhanced localized plasticity - a mechanism for hydrogen-related fracture, Mater. Sci. Eng. A, 176, pp. 191–202. [13] Beachem, C.D. (1972). A New Model for Hydrogen-Assisted Cracking ( Hydrogen " Embrittlement "), Metall. Trans., 3(February), pp. 437–451. [14] Depover, T., Verbeken, K. (2018). The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: An experimental proof of the HELP mechanism, Int. J. Hydrogen Energy, 43(5), pp. 3050–61, DOI: 10.1016/j.ijhydene.2017.12.109. [15] Nagumo, M. (2004). Hydrogen related failure of steels - A new aspect, Mater. Sci. Technol., 20(8), pp. 940–950, DOI: 10.1179/026708304225019687. [16] Ortiz, M., Cuitiño, A.M. (1996). Ductile fracture by vacancy condensation in fcc. single crystals, Acta Mater., 44(2), pp. 427–436. [17] Tsai, S.T., Yen, K.P., Shih, H.C. (1998). The embrittlement of duplex stainless steel in sulfide-containing 3.5 wt% NaCl solution, Corros. Sci., 40(2–3), pp. 281–295, DOI: 10.1016/S0010-938X(97)00135-2. [18] Chou, S.L., Tsai, W.T. (1999). Hydrogen embrittlement of duplex stainless steel in concentrated sodium chloride solution, Mater. Chem. Phys., 60(2), pp. 137–142, DOI: 10.1016/S0254-0584(99)00077-2. [19] Zucchi, F., Grassi, V., Monticelli, C., Trabanelli, G. (2006). Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions, Corros. Sci., 48(2), pp. 522–530, DOI: 10.1016/j.corsci.2005.01.004. [20] Luo, H., Dong, C.F., Liu, Z.Y., Maha, M.T.J., Li, X.G. (2013). Characterization of hydrogen charging of 2205 duplex stainless steel and its correlation with hydrogen-induced cracking, Mater. Corros., 64(1), pp. 26–33, DOI: 10.1002/maco.201106146. [21] Vaňová, P., Sojka, J. (2014). Hydrogen embrittlement of duplex steel tested using slow strain rate test, Metalurgija, 53(2), pp. 163–136. [22] da Silva, B.R.S., Salvio, F., Santos, D.S. (2012).Hydrogen Embrittlement of Super Duplex Stainless steel Tube UNS S32750 Under Mechanical Stress., pp. 245–253. [23] Olden, V., Thaulow, C., Johnsen, R. (2008). Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels, Mater. Des., 29(10), pp. 1934–1948, DOI: 10.1016/j.matdes.2008.04.026. [24] Pohl, M., Storz, O. (2004). Sigma-phase in duplex-stainless steels, Zeitschrift Für Met., 95(7), pp. 631–638. [25] Depover, T., Escobar, D.M.P., Wallaert, E., Zermout, Z., Verbeken, K. (2014). Effect of hydrogen charging on the mechanical properties of advanced high strength steels, Int. J. Hydrogen Energy, 39(9), pp. 4647–4656, DOI: 10.1016/j.ijhydene.2013.12.190. [26] Zakroczymski, T., Glowacka, A., Swiatnicki, W. (2005). Effect of hydrogen concentration on the embrittlement of a duplex stainless steel, Corros. Sci., 47(6), pp. 1403–1414, DOI: 10.1016/j.corsci.2004.07.036. [27] Chou, S.L., Tsai, W.T. (1999). Effect of grain size on the hydrogen-assisted cracking in duplex stainless steels, Mater. Sci. Eng. A, 270(2), pp. 219–224, DOI: 10.1016/S0921-5093(99)00174-4. [28] Luu, W.C., Liu, P.W., Wu, J.K. (2002). Hydrogen transport and degradation of a commercial duplex stainless steel, Corros. Sci., 44(8), pp. 1783–1791, DOI: 10.1016/S0010-938X(01)00143-3. [29] Örnek, C., Reccagni, P., Kivisäkk, U., Bettini, E., Engelberg, D.L., Pan, J. (2018). Hydrogen embrittlement of super duplex stainless steel – Towards understanding the effects of microstructure and strain, Int. J. Hydrogen Energy, 43(27), pp. 12543–12555, DOI: 10.1016/j.ijhydene.2018.05.028. [30] Depover, T., Wallaert, E., Verbeken, K. (2016). On the synergy of diffusible hydrogen content and hydrogen diffusivity in the mechanical degradation of laboratory cast Fe-C alloys, Mater. Sci. Eng. A, 664, pp. 195–205, DOI: 10.1016/j.msea.2016.03.107. [31] Claeys, L., Depover, T., De Graeve, I., Verbeken, K. (2019). First observation by EBSD of martensitic transformations due to hydrogen presence during straining of duplex stainless steel, Mater. Charact., 156, pp. 109843, DOI: 10.1016/j.matchar.2019.109843. [32] Abraham, D.P., Altstetter, C.J. (1995). The effect of hydrogen on the yield and flow stress of an austenitic stainless steel, Metall. Mater. Trans. A, 26(11), pp. 2849–2858, DOI: 10.1007/BF02669643. [33] Takakuwa, O., Mano, Y., Soyama, H. (2014). Increase in the local yield stress near surface of austenitic stainless steel due to invasion by hydrogen, Int. J. Hydrogen Energy, 39(11), pp. 6095–6103, DOI: 10.1016/j.ijhydene.2014.01.190.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=