Issue 51

M.G. Masciotta et alii, Frattura ed Integrità Strutturale, 51 (2020) 423-441; DOI: 10.3221/IGF-ESIS.51.31 441 [23] Ramos, L.F., Marques, L., Lourenço, P.B., De Roeck, G., Campos-Costa, A. and Roque, J. (2010). Monitoring historical masonry structures with operational modal analysis: two case studies. Mechanical Systems and Signal Processing, 24(5), pp. 1291-1305. [24] Masciotta, M.G., Ramos, L.F., Lourenço, P.B. and Vasta, M. (2017). Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model. Mechanical Systems and Signal Processing, 84, pp. 286-307. [25] Masciotta, M.G., Ramos, L.F. and Lourenço, P.B. (2017). The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal. Journal of Cultural Heritage, 27, pp. 36-47. [26] Ubertini, F., Cavalagli, N., Kita, A. and Comanducci, G. (2018). Assessment of a monumental masonry bell-tower after 2016 Central Italy seismic sequence by long-term SHM. Bulletin of Earthquake Engineering, 16(2), pp. 775-801. [27] Heyman, J. (1982). The Masonry Arch. Ellis Horwood Ltd. [28] ARTeMIS Modal 5.3.1.1, Structural Vibration Solutions A/S (2018). [29] Liu, M. and Gorman, D.G. (1995). Formulation of Rayleigh damping and its extensions. Computers and Structures, 57(2), pp. 277-285. [30] Gilbert, M. (2007). Limit analysis applied to masonry arch bridges: state-of-the-art and recent developments. ARCH 2007 – Proceeding of the 5th International Conference on Arch Bridges, pp. 13-28. [31] Pineda, P. (2016). Collapse and upgrading mechanisms associated to the structural materials of a deteriorated masonry tower. Nonlinear assessment under different damage and loading levels. Eng. Fail. Anal. 63, pp. 72–93. [32] Ramos, L.F., De Roeck, G., Lourenço, P.B. et al. (2010). Damage identification on arched masonry structures using ambient and random impact vibrations. Eng Struct, 32, pp. 146–162. [33] Girardi, M. Padovani, C. and Pellegrini, D. (2015). The NOSA-ITACA code for the safety assessment of ancient constructions: a case study in Livorno. Advances in Engineering Software Journal, 89, pp. 64-76. [34] Binante, V., Girardi, M., Padovani, C., Pasquinelli, G., Pellegrini, D., Porcelli, M., and Robol, L. NOSA-ITACA 1.1 ISTI-CNR, 2017-SW-013. [35] Pellegrini, D., Girardi, M., Padovani, C. and Azzara, R.M. (2017). A new numerical procedure for assessing the dynamic behaviour of ancient of ancient masonry towers. In M. Papadrakakis, M. Fragiadakis (eds.) COMPDYN 2017 Computational Methods in Structural Dynamics and Earthquake Engineering, vol. 2, pp. 5045-5055, Rodhos. [36] Girardi, M., Padovani, C. and Pellegrini, D. (2018). Modal analysis of masonry structures. Mathematics and Mechanics of Solids, SAGE Publications Ltd STM, First Published February 13. [37] Del Piero, G. (1989). Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica, 24, pp. 150–162. [38] Lucchesi, M., Padovani, C., Pasquinelli, G. and Zani, N. (2008). Masonry constructions: mechanical models and numerical applications. Lecture Notes in Applied and Computational Mechanics, Springer-Verlag. [39] Porcelli, M., Binante, V., Girardi, M., Padovani., C. and Pasquinelli, G. (2015). A solution procedure for constrained eigenvalue problems and its application within the structural finite-element code NOSA-ITACA. Calcolo, 52(2), pp. 167-189. [40] Girardi, M., Padovani, C., Pellegrini, D. and Robol, L. (2019). Model Updating Procedure to Enhance Structural Analysis in FE Code NOSA-ITACA. J. Perform. Constr. Facil, 33(4): 04019041. [41] Binda, L., Roberti, G.M. and Tiraboschi, C. (1996). Problemi di misura dei parametri meccanici della muratura e dei suoi componenti. Atti del Convegno Nazionale La Meccanica delle Murature tra Teoria e Progetto, Messina. [42] Narayanan, S.P. and Sirajuddin, M. (2013). Properties of Brick Masonry for FE modeling. American Journal of Engineering Research, 1, pp. 6-11. [43] DeJong, M., De Lorenzis, L., Adams, S. and Ochsendorf, J. (2008). Rocking stability of masonry arches in seismic regions. Earthq Spectra, 24, pp. 847–865. [44] Albuerne, A., Williams, M. and Lawson, V. (2013). Prediction of the failure mechanism of arches under base motion using DEM based on the NSCD method. Wiadomos´ci Konserw, 34, pp. 41–47. [45] Pepi, C. et al. (2017). Dynamic characterization of a severely damaged historic masonry bridge. Procedia Engineering, 199, pp. 3398-3403. [46] Pellegrini, D., Girardi, M., Lourenco, P.B., Masciotta, M.G., Mendes, N., Padovani, C. and Ramos, L.F. (2018). Modal analysis of historical masonry structures: linear perturbation and software benchmarking. Construction and Building Materials, 189, pp. 1232-1250.

RkJQdWJsaXNoZXIy MjM0NDE=