Issue 51

F. Fabbrocino et alii, Frattura ed Integrità Strutturale, 51 (2020) 410-422; DOI: 10.3221/IGF-ESIS.51.30 421 criterion. The numerical model is able to describe fast crack curving phenomena. Two loading configurations involving in both pure mode I and mixed mode are successfully simulated. The validity of the proposed model was proved by means of a sensitivity analysis in terms of mesh dependence and time required for the computation. The proposed model shows capabilities to simulate fast crack phenomena although further studies are required to simulate crack branching phenomena. R EFERENCES [1] Tawk, I., Navarro, P., Ferrero, J.F., Barrau, J.J., Abdullah, E. (2010). Composite delamination modelling using a multi- layered solid element. Composites Science and Technology 70 (2), pp. 207-214. DOI: 10.1016/j.compscitech.2009.10.008. [2] Fortunato, G., Funari, M.F., Lonetti, P. (2017). Survey and seismic vulnerability assessment of the Baptistery of San Giovanni in Tumba (Italy). Journal of Cultural Heritage 26, pp. 64-78. DOI: 10.1016/j.culher.2017.01.010. [3] de Borst, R., Remmers, J.J.C. (2008). Computational Methods for Debonding in Composites. Mechanical Response of Composites 10, pp. 1-25. [4] Funari, M.F., Greco, F., Lonetti, P. (2018). Sandwich panels under interfacial debonding mechanisms. Composite Structures 203, pp. 310-320. DOI: 10.1016/j.compstruct.2018.06.113. [5] Rabinovitch, O. (2008). Cohesive interface modeling of debonding failure in FRP strengthened beams. Journal of Engineering Mechanics-Asce 134 (7), pp. 578-588. DOI: 10.1061/(Asce)0733-9399(2008)134:7(578). [6] Funari, M.F., Lonetti, P. (2017). Initiation and evolution of debonding phenomena in layered structures. Theoretical and Applied Fracture Mechanics 92, pp. 133-145. DOI: 10.1016/j.tafmec.2017.05.030. [7] Rabinovitch, O. (2014). Dynamic edge debonding in FRP strengthened beams. European Journal of Mechanics, A/Solids 47, pp. 309-326. DOI: 10.1016/j.euromechsol.2014.04.008. [8] Murotani, K., Yagawa, G., Choi J.B. (2013). Adaptive finite elements using hierarchical mesh and its application to crack propagation analysis. Computer Methods in Applied Mechanics and Engineering 253, pp. 1- 14. [9] Dirik, H., Yalçinkaya, T. (2018). Crack path and life prediction under mixed mode cyclic variable amplitude loading through XFEM. International Journal of Fatigue 114 34-50. DOI: 10.1016/j.ijfatigue.2018.04.026. [10] Menouillard, T., Belytschko, T. (2010). Smoothed nodal forces for improved dynamic crack propagation modeling in XFEM. International Journal for Numerical Methods in Engineering 84 (1), pp. 47-72. DOI: 10.1002/Nme.2882. [11] Ooi, E.T., Shi, M., Song, C., Tin-Loi, F., Yang Z.J. (2013). Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique. Engineering Fracture Mechanics 106, pp. 1-21. DOI: 10.1016/j.engfracmech.2013.02.002. [12] Zhang, Y., Zhuang, X. (2019). Cracking elements method for dynamic brittle fracture. Theoretical and Applied Fracture Mechanics 102 1-9. DOI: 10.1016/j.tafmec.2018.09.015. [13] Bilgen, C., Weinberg, K. (2019). On the crack-driving force of phase-field models in linearized and finite elasticity. Computer Methods in Applied Mechanics and Engineering 353 348-372. DOI: 10.1016/j.cma.2019.05.009. [14] Lonetti, P. (2010). Dynamic propagation phenomena of multiple delaminations in composite structures. Computational Materials Science 48 (3), pp. 563-575. DOI: 10.1016/j.commatsci.2010.02.024. [15] Funari, M.F., Greco F., Lonetti P. (2016). A cohesive finite element model based ALE formulation for z-pins reinforced multilayered composite beams. Procedia Structural Integrity 2, pp. 452-459. DOI: 10.1016/j.prostr.2016.06.059. [16] Funari, M.F., Greco, F., Lonetti, P. (2017). Dynamic debonding in layered structures: A coupled ALE-cohesive approach. Frattura ed Integrita Strutturale 11 (41), pp. 524-535. DOI: 10.3221/IGF-ESIS.41.63. [17] Funari, M.F., Greco, F., Lonetti, P., Luciano, R., Penna, R. (2018). An interface approach based on moving mesh and cohesive modeling in Z-pinned composite laminates. Composites Part B: Engineering 135 207-217. DOI: 10.1016/j.compositesb.2017.10.018. [18] Funari, M.F., Greco, F., Lonetti, P. (2016). A moving interface finite element formulation for layered structures. Composites Part B: Engineering 96 325-337. DOI: 10.1016/j.compositesb.2016.04.047. [19] Funari, M.F., Lonetti, P., Spadea, S. (2019). A crack growth strategy based on moving mesh method and fracture mechanics. Theoretical and Applied Fracture Mechanics 102 103-115. DOI: 10.1016/j.tafmec.2019.03.007. [20] Fabbrocino, F., Funari, M.F., Greco, F., Lonetti, P., Luciano, R., Penna, R. (2019). Dynamic crack growth based on moving mesh method. Composites Part B: Engineering 174 107053. DOI: 10.1016/j.compositesb.2019.107053. [21] Bruno, D., Greco, F., Lonetti, P. (2013). A fracture-ALE formulation to predict dynamic debonding in FRP strengthened concrete beams. Composites Part B: Engineering 46 46-60. DOI: 10.1016/j.compositesb.2012.10.015.

RkJQdWJsaXNoZXIy MjM0NDE=