Issue 51
A. Gesualdo et alii, Frattura ed Integrità Strutturale, 51 (2020) 376-385; DOI: 10.3221/IGF-ESIS.51.27 384 whose geometry is imposed by the NT behavior and the solution corresponds to the minimum of total potential energy. The 2-D approach is conversely based on the minimum of the complementary energy, with a definition of the loaded area as a set of compressed rays and the loading actions on the panel are obtained as a solution of the procedure. The agreement between the results of the two procedures is satisfying, both with regard to the reactive area and to the stress intensity. R EFERENCES [1] Guadagnuolo, M., Faella, G., Donadio, A., Ferri, L. (2014). Integrated evaluation of the Church of S. Nicola di Mira: Conservation versus safety. NDT & E International, 68, pp. 53-65. DOI: 10.1016/j.ndteint.2014.08.002. [2] Bergamasco, I., Gesualdo, A., Iannuzzo, A., Monaco, M. (2018). An integrated approach to the conservation of the roofing structures in the Pompeian domus, J. Cult. Herit., 31, pp. 141-151. DOI:10.1016/j.culher.2017.12.006. [3] Betti, M., Galano, L., Petracchi, M. and Vignoli, A. (2015). Diagonal cracking shear strength of unreinforced masonry panels: a correction proposal of the b shape factor, B. Earthq. Eng., 13(10), pp. 3151-3186. DOI: 10.1007/s10518-015-9756-8 [4] Guadagnuolo M., Monaco, M. (2009). Out of plane behaviour of unreinforced masonry walls. In: Protection of Historical Buildings, 2, pp. 1177-1180, London, New York: CRC Press, Taylor & Francis Group. [5] Betti, M., Galano, L., Vignoli, A. (2008). Seismic response of masonry plane walls: A numerical study on spandrel strength, AIP Conf. Proc., 1020(1), pp. 787-794. DOI: 10.1063/1.2963915. [6] Calderoni, B., Cordasco, E. A., Lenza, P., Pacella, G. (2011). A simplified theoretical model for the evaluation of structural behaviour of masonry spandrels, Int. J. Mater. Struct. Integrity, 5(2-3), pp. 192-214. DOI:10.1504/IJMSI.2011.041934 [7] Buonocore, G., Gesualdo, A., Monaco, M., Savino, M.T. (2014). Improvement of Seismic Performance of Unreinforced Masonry Buildings using Steel Frames. Civil-Comp Proceedings, 106. DOI:10.4203/ccp.106.117. [8] Gatta, C., Addessi, D., Vestroni, F. (2018). Static and dynamic nonlinear response of masonry walls. International Journal of Solids and Structures, 155, pp. 291-303. DOI: 10.1016/j.ijsolstr.2018.07.028. [9] Iannuzzo, A., Angelillo, M., De Chiara, E., De Guglielmo, F., De Serio, F., Ribera, F., Gesualdo, A. (2018). Modelling the cracks produced by settlements in masonry structures. Meccanica, 53(7), pp. 1857-1873. DOI: 10.1007/s11012-017-0721-2 [10] Iannuzzo, A., De Luca, A., Fortunato, A., Gesualdo, A., Angelillo, M. (2018b). Fractures detection in masonry constructions under horizontal seismic forces. Ing. Sismica, 35(3), pp. 87-103. DOI: 10.1007/s11012-017-0721-2 [11] Moseley, H. (1833). On a new principle in statics, called the principle of least pressure, London and Edinburgh Philosophical Magazine and Journal of Science, 3, 285-288. [12] Euler, L. (1774). De pressione ponderis in planum cui incumbit, Novi Commentarii academiae scientiarum Petropolitanae 18, 289-329. [13] Signorini, A.(1925). Un teorema di esistenza ed unicità nella statica dei materiali poco resistenti a trazione. Rend. Accad. Naz. Lincei, 401–406. [14] Heyman, J. (1966). The stone skeleton, Int. J. Solids Struct., 2 (2), 265–279, DOI:10.1016/ 0020-7683(66)90018-7. [15] Heyman, J. (1966). The stone skeleton. International Journal of Solids and Structures, 2(2), pp. 249-279. DOI: 10.1016 /0020-7683(66)90018-7 [16] Heyman, J. (1977). Equilibrium of Shell Structures, Clarendon Press, Oxford, U.K. [17] Heyman, J. (1995). The stone skeleton: structural engineering of masonry architecture, Cambridge University Press, Cambridge, U.K. [18] Kooharian, A. (1953). Limit Analysis of Voussoirs and Concrete Arches, Journal of American Concrete Institute, 49(12), 317-328. [19] Zienkiewicz O.C., Valliappan, S., King, I.P. (1968). Stress Analysis of Rock as a ‘No Tension’ Material, Géotechnique, 18(1), DOI: 10.1680/geot.1968.18.1.56. [20] Chen, W.F. (1970). Extensibility of concrete and theorems of limit analysis. Journal of the Engineering Mechanics Division, 96(3), pp. 341-352. [21] Heuzé, F.E., Goodman, R.E., Bornstein, A. (1971). Numerical analyses of deformability tests in jointed rock—“Joint Perturbation” and “No Tension” Finite Element solutions. Rock mechanics, 3(1), pp. 13-24. DOI: 10.1007/BF01243549
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=