Issue 51
G. Cocchetti et alii, Frattura ed Integrità Strutturale, 51 (2020) 356-375; DOI: 10.3221/IGF-ESIS.51.26 374 R EFERENCES [1] Heyman, J. (1969). The safety of masonry arches, International Journal of Mechanical Sciences, 11(4), pp. 363 − 385, DOI: 10.1016 /0020-7403(69)90070-8. [2] Heyman, J. (1977). Equilibrium of Shell Structures, Clarendon Press, Oxford. [3] Heyman, J. (1982). The Masonry Arch, Ellis Horwood Ltd., Chichester. [4] Heyman, J. (2009). La coupe des pierres, In: Proceedings of the 3 rd International Congress on Construction History, Brandenburg University of Technology, Cottbus, Germany, 20–24 May 2009, 2, pp. 807–812. [5] Rizzi, E., Cocchetti, G., Colasante, G., Rusconi, F. (2010). Analytical and numerical analysis on the collapse mode of circular masonry arches, In: Proceedings of 7 th International Conference on Structural Analysis of Historical Constructions (SAHC-2010), Eds. Xianglin Gu and Xiaobin Song, Shanghai, China, October 6-8, 2010, Trans Tech Publications, Switzerland, Periodical of Advanced Materials Research 133-134, pp. 467–472, DOI: 10.4028 /www.scientific.net/AMR.133-134.467. [6] Cocchetti, G., Colasante, G., Rizzi, E. (2011). On the analysis of minimum thickness in circular masonry arches. Part I: State of the art and Heyman's solution. Part II: Present CCR solution. Part III: Milankovitch-type solution, Applied Mechanics Reviews, ASME, September 01, 2011, 64(5), Paper 050802 (Oct. 01, 2012), pp. 1–27. DOI: 10.1115/1.4007417. [7] Rizzi, E., Colasante, G., Frigerio, A., Cocchetti, G. (2012). On the mixed collapse mechanism of semi-circular masonry arches, In: Proceedings of 8 th International Conference on Structural Analysis of Historical Constructions (SAHC-2012), Wroclaw, Poland, October 15–17, 2012, Ed. Jerzy Jasienko, DWE, Vol. 1, pp. 541–549. [8] Rizzi, E., Rusconi, F., Cocchetti, G. (2014). Analytical and numerical DDA analysis on the collapse mode of circular masonry arches, Engineering Structures, 60(February 2014), pp. 241–257, DOI: 10.1016/j.engstruct.2013.12.023. [9] Cocchetti, G., Rizzi, E. (2018). Limit analysis of circular masonry arches at reducing friction, In: Proceedings of the 10 th International Masonry Conference (10 th IMC), Politecnico di Milano, July 9–11, 2018, Eds. Gabriele Milani, Alberto Taliercio and Stephen Garrity, The International Masonry Society (IMS), pp. 486–503. [10] Cocchetti, G., Rizzi, E. (2019). Non-linear programming numerical formulation to acquire limit self-standing conditions of circular masonry arches accounting for limited friction, International Journal of Masonry Research and Innovation, Accepted 29 October 2019, in press (corrected proofs). [11] Ochsendorf, J. (2002). Collapse of Masonry Structures, Doctoral Dissertation, University of Cambridge, UK. [12] Ochsendorf, J. (2006). The masonry arch on spreading supports, The Structural Engineer, 84(2), pp. 29–36. [13] Milankovitch, M. (1907). Theorie der Druckkurven, Zeitschrift für Mathematik und Physik, 55, pp. 1–27. [14] Foce, F. (2007). Milankovitch’s Theorie der Druckkurven: Good mechanics for masonry architecture, Nexus Network Journal, 9(2), pp. 185 − 210. [15] Alexakis, H., Makris, N. (2013). Minimum thickness of elliptical masonry arches, Acta Mechanica, 224(12), pp. 2977 − 2991. [16] Makris, N., Alexakis, H. (2013). The effect of stereotomy on the shape of the thrust-line and the minimum thickness of semicircular masonry arches, Archive of Applied Mechanics, 83(10), pp. 1511 − 1533. [17] Alexakis, H., Makris, N. (2015). Limit equilibrium analysis of masonry arches, Archive of Applied Mechanics, 85(9 − 10), pp. 1363 − 1381. [18] Bagi, K. (2014). When Heyman’s Safe Theorem of rigid block systems fails: Non − Heymanian collapse modes of masonry structures, International Journal of Solids and Structures, 51(14), pp. 2696 − 2705. [19] Lengyel, G. (2018). Minimum thickness of the gothic arch, Archive of Applied Mechanics, 88(5), pp. 769–788. DOI: 10.1007/s00419-018-1341-6. [20] Cavalagli, N., Gusella, V., Severini, L. (2016). Lateral loads carrying capacity and minimum thickness of circular and pointed masonry arches, International Journal of Mechanical Sciences, 115 − 116(September 2016), pp. 645 − 656. [21] Nikolić, D. (2017). Thrust line analysis and the minimum thickness of pointed masonry arches, Acta Mechanica, 228(6), pp. 2219 − 2236. DOI: 10.1007/s00707-017-1823-6. [22] Gáspár, O., Sipos, A.A., Sajtos, I. (2018). Effect of stereotomy on the lower bound value of minimum thickness of semi − circular masonry arches, International Journal of Architectural Heritage, 12(6), pp. 899–921. DOI: 10.1080/15583058.2017.1422572. [23] Aita, D., Barsotti, R., Bennati, S. (2019). Looking at the collapse modes of circular and pointed masonry arches through the lens of Durand − Claye’s stability area method, Archive of Applied Mechanics, pp. 1 − 18. DOI: 10.1007/s00419-019-01526-z.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=