Issue 51
E. Mousavian et alii, Frattura ed Integrità Strutturale, 51 (2020) 336-355; DOI: 10.3221/IGF-ESIS.51.25 354 DOI: 10.1016/S0045-7949(98)00279-X [6] Livesley, R.K. (1992). A computational model for the limit analysis of three-dimensional masonry structures, Meccanica, 27(3), pp. 161-172. DOI: 10.1007/BF00430042 [7] Casapulla, C. and Maione, A. (2018). Modelling the dry-contact interface of rigid blocks under torsion and combined loading: concavity vs. convexity formulation, Int. J. Nonlin. Mech., 99, pp. 86-96. DOI: 10.1016/j.ijnonlinmec.2017.11.002 [8] Heyman, J. (1969). The safety of masonry arches, Int. J. Mech. Sci., 11(4), pp. 363-385. DOI: 10.1016 /0020-7403(69)90070-8 [9] Casapulla, C. and Lauro, F. (2000). A simple computation tool for the limit-state analysis of masonry arches. Proc. 5th International Congress on Restoration of Architectural Heritage (Firenze 2000), Firenze (Italy), pp. 2056-2064. [10] [10] Block, P.P.C.V. (2005). Equilibrium systems: Studies in masonry structure, M.S. Thesis, Massachusetts Institute of Technology, Cambridge (USA). [11] Velilla, C., Alcayde, A., San-Antonio-Gómez, C., Montoya, F.G., Zavala, I. and Manzano-Agugliaro, F. (2019). Rampant arch and its optimum geometrical generation, Symmetry, 11(5), art. no. 627. DOI: 10.3390/sym11050627 [12] Tempesta, G. and Galassi, S. (2019). Safety evaluation of masonry arches. A numerical procedure based on the thrust line closest to the geometrical axis, Int. J. Mech. Sci., 155, pp. 206-221. DOI: 10.1016/j.ijmecsci.2019.02.036 [13] Beatini, V., Royer-Carfagni, G. and Tasora, A. (2019). Modeling the shear failure of segmental arches, Int. J. Sol. Struct., 158, pp. 21-39. DOI: 10.1016/j.ijsolstr.2018.08.023 [14] Aita, D., Barsotti, R. and Bennati, S. (2019). Looking at the collapse modes of circular and pointed masonry arches through the lens of Durand-Claye’s stability area method, Arch. Appl. Mech., in press. DOI: 10.1007/s00419-019- 01526-z [15] Di Carlo, F., Coccia, S. and Rinaldi, Z. (2018). Collapse load of a masonry arch after actual displacements of the supports, Arch. Appl. Mech., 88(9), pp. 1545-1558. DOI: 10.1007/s00419-018-1386-6 [16] Rizzi, E., Rusconi, F. and Cocchetti, G. (2014). Analytical and numerical DDA analysis on the collapse mode of circular masonry arches, Eng. Struct., 60, pp. 241-257. DOI: 10.1016/j.engstruct.2013.12.023 [17] Heyman, J. (1995). The Stone Skeleton: structural engineering of masonry architecture, Cambridge University Press, Cambridge (UK). [18] Lau, W.W. (2006). Equilibrium analysis of masonry domes, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (USA). [19] Beatini, V., Royer-Carfagni, G. and Tasora, A. (2019). A non-smooth-contact-dynamics analysis of Brunelleschi’s cupola: an octagonal vault or a circular dome? Meccanica, 54(3), pp. 525-547. DOI: 10.1007/s11012-018-00934-9 [20] Pavlovic, M., Reccia, E. and Cecchi, A. (2016). A procedure to investigate the collapse behavior of masonry domes: some meaningful cases, Int. J. Archit. Herit., 10(1), pp. 67-83. DOI: 10.1080/15583058.2014.951797 [21] D'Ayala, D.F. and Tomasoni, E. (2011). Three-dimensional analysis of masonry vaults using limit state analysis with finite friction, Int. J. Archit. Herit., 5(2), pp. 140-171. DOI: 10.1080/15583050903367595 [22] Chiozzi, A., Milani, G., Tralli, A.M., A Genetic Algorithm NURBS-based new approach for fast kinematic limit analysis of masonry vaults, Comput. Struct., 182, pp. 187-204. DOI: 10.1016/j.compstruc.2016.11.003 [23] Mousavian, E. and Mehdizadeh Saradj, F. (2018). Automated detailing and stability analysis of under-construction masonry vaults, Journal of Architectural Engineering-ASCE, 24(3), art. no. 04018014. DOI: 10.1061/(ASCE)AE.1943-5568.0000314 [24] De Piano, M., Modano, M., Benzoni, G., Berardi, V.P. and Fraternali, F. (2017). A numerical approach to the mechanical modeling of masonry vaults under seismic loading, Ingegneria Sismica, 34(4), pp. 103-119. [25] Calderini, C., Rossi, M., Lagomarsino, S., Cascini, L. and Portioli, F. (2017). Experimental and numerical analysis of seismic response of unreinforced masonry cross vaults, Proc. 7th International Conference on Advances in Experimental Structural Engineering (AESE 2017), Pavia (Italy), pp. 659-670. DOI: 10.7414/7aese.T5.136 [26] Baggio, C., and Trovalusci, P. (2016). 3D limit analysis of roman groin vaults, Proc. 16th International Brick and Block Masonry Conference (IBMAC 2016) Padova (Italy), pp. 1023-1028. [27] Lourenço, P.B., Rots, J.G. and Blaauwendraad, J. (1995). Two approaches for the analysis of masonry structures: micro and macro-modeling, Heron, 40(4), pp. 1-28. http://resolver.tudelft.nl/uuid :c39b29ab-3c75-47db-9cb5-bf2b1c678f1f [28] Li, T. and Atamturktur, S. (2013). Fidelity and robustness of detailed micromodeling, simplified micromodeling, and macromodeling techniques for a masonry dome, Journal of Performance of Constructed Facilities, 28(3), 480-490. [29] Olmati, P., Gkoumas, K. and Bontempi, F. (2019). Simplified FEM modelling for the collapse assessment of a masonry vault, Frattura ed Integrita Strutturale, 13(47), pp. 141-149. DOI: 10.3221/IGF-ESIS.47.11
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=