Issue 51

G. Ramaglia et alii, Frattura ed Integrità Strutturale, 51 (2020) 288-312; DOI: 10.3221/IGF-ESIS.51.23 303 known. The weak influence of the tensile strength of masonry on the axial capacity of the strengthened masonry element is clear, by the experimental results also. It is due to the prevailing confinement effect if compared to that of tensile strength of masonry. The Drucker-Prager model strongly overestimates the experimental results. This effect is very clear for high values of the confining stress, while, for low confining stresses, the mechanical model provides reliable results. However, a great number of tests were carried out at high confining stress values. Therefore, on the entire experimental sample the model provides a weak estimation of the axial capacity of masonry columns wrapped with composites. Furthermore, it results strongly influenced by the tensile strength of masonry providing confinement curves strongly different to change the tensile strength of masonry. The Henchy-Von Mises model does not depend on the normalized tensile strength of confined material. The theoretical and experimental comparison showed a strong underestimation of the experimental values. This effect is clear for the entire confining stress field. The Mohr-Coulomb provides a clear overestimation of the experimental results for the entire experimental sample. In fact, also for low values of the effective confining stress the experimental results are not well fitted by the theoretical results. Furthermore, Mohr-Coulomb results are strongly influenced by the tensile strength of masonry. Finally, the reliability of the Stassi-D’Alia model was remarked by the best values of three statistical parameters: mean absolute percentage error (MAPE), mean square error (MSE) and coefficient of determination (R 2 ). R EFERENCES [1] Ramaglia, G., Fabbrocino, F., Lignola, G.P., Prota, A. (2019). Unified theory for flexural strengthening of masonry with composites, Materials (Basel), 12(4). DOI: 10.3390/ma12040680. [2] Penna, A. (2015). Seismic assessment of existing and strengthened stone-masonry buildings: Critical issues and possible strategies, Bull. Earthq. Eng., 13(4), pp. 1051-1071. DOI: 10.1007/s10518-014-9659-0. [3] Kwiecień, A., de Felice, G., Oliveira, D. V., Zając, B., Bellini, A., De Santis, S., Ghiassi, B., Lignola, G.P., Lourenço, P.B., Mazzotti, C., Prota, A. (2016). Repair of composite-to-masonry bond using flexible matrix, Mater. Struct. Constr., 48(7), pp. 2563-2580. DOI: 10.1617/s11527-015-0668-5. [4] Parisi, F., Lignola, G.P., Augenti, N., Prota, A., Manfredi, G. (2013). Rocking response assessment of in-plane laterally-loaded masonry walls with openings, Eng. Struct., 56, pp. 1234-1248. DOI: 10.1016/j.engstruct.2013.06.041. [5] Ramaglia, G., Lignola, G.P., Fabbrocino, F., Prota, A. (2017). Numerical Modelling of Masonry Barrel Vaults Reinforced with Textile Reinforced Mortars, Key Eng. Mater., 747, pp. 11-19. DOI: 10.4028 /www.scientific.net/kem.747.11. [6] Belliazzi, S., Lignola, G.P., Prota, A. (2018). Textile reinforced mortars systems: a sustainable way to retrofit structural masonry walls under tsunami loads, Int. J. Mason. Res. Innov., 3(3). DOI: 10.1504/ijmri.2018.093484. [7] Fabbrocino, F., Ramaglia, G., Lignola, G.P., Prota, A. (2019). Ductility-based incremental analysis of curved masonry structures, Eng. Fail. Anal., 97, pp. 653-675. DOI: 10.1016/j.engfailanal.2019.01.027. [8] Schueremans, L., Cizer, Ö., Janssens, E., Serré, G., Balen, K. Van. (2011). Characterization of repair mortars for the assessment of their compatibility in restoration projects: Research and practice, Constr. Build. Mater., 25(12), pp. 4338-4350. DOI: 10.1016/j.conbuildmat.2011.01.008. [9] D’Ambrisi, A., Feo, L., Focacci, F. (2013). Experimental and analytical investigation on bond between Carbon-FRCM materials and masonry, Compos. Part B Eng., 45, pp. 15-20. DOI: 10.1016/j.compositesb.2012.10.018. [10] De Felice, G., Aiello, M.A., Bellini, A., Ceroni, F., De Santis, S., Garbin, E., Leone, M., Lignola, G.P., Malena, M., Mazzotti, C., Panizza, M., Valluzzi, M.R. (2016). Experimental characterization of composite-to-brick masonry shear bond, Mater. Struct. Constr. DOI: 10.1617/s11527-015-0669-4. [11] Ramaglia, G., Lignola, G.P., Prota, A. (2016). Collapse analysis of slender masonry barrel vaults, Eng. Struct., 117, pp. 86-100. DOI: 10.1016/j.engstruct.2016.03.016. [12] Giamundo, V., Lignola, G.P., Maddaloni, G., da Porto, F., Prota, A., Manfredi, G. (2016). Shaking table tests on a full-scale unreinforced and IMG retrofitted clay brick masonry barrel vault, Bull. Earthq. Eng., 14(6), pp. 1663-1693. DOI: 10.1007/s10518-016-9886-7. [13] Marques, R., Lourenço, P.B. (2014). Unreinforced and confined masonry buildings in seismic regions: Validation of macro-element models and cost analysis, Eng. Struct., 65, pp. 52-67. DOI: 10.1016/j.engstruct.2014.01.014. [14] Okail, H., Abdelrahman, A., Abdelkhalik, A., Metwaly, M. (2016). Experimental and analytical investigation of the lateral load response of confined masonry walls, HBRC J., 12(1), pp. 33-46. DOI: 10.1016/j.hbrcj.2014.09.004. [15] Ramaglia, G., Russo Spena, F., Lignola, G.P., Prota, A. (2019). Two Parameters Confinement Model for Clay Brick Masonry, Int. J. Comput. Methods. 16(4). DOI: 10.1142/s0219876219400103.

RkJQdWJsaXNoZXIy MjM0NDE=