Issue 51
G.S. Serovaev et alii, Frattura ed Integrità Strutturale, 51 (2020) 225-235; DOI: 10.3221/IGF-ESIS.51.18 234 R EFERENCES [1] Roberts, S.S.J., Davidson, R. (1991). Mechanical properties of composite materials containing embedded fiber-optic sensors. In: Claus, R.O., Udd, E., (Eds.), Fiber Optic Smart Structures and Skins IV, 1588, pp. 326–341. [2] Hadzic, R., John, S., Herszberg, I. (1999). Structural integrity analysis of embedded optical fibres in composite structures, Compos. Struct., 47(1–4), pp. 759–765, DOI: 10.1016/S0263-8223(00)00050-7. [3] Jensen, D.W., Pascual, J., August, J.A. (1992). Performance of graphite/bismaleimide laminates with embedded optical fibers. I. Uniaxial tension, Smart Mater. Struct., 1(1), pp. 24–30, DOI: 10.1088/0964-1726/1/1/004. [4] Surgeon, M., Wevers, M. (1999). Static and dynamic testing of a quasi-isotropic composite with embedded optical fibres, Compos. Part A Appl. Sci. Manuf., 30(3), pp. 317–324, DOI: 10.1016/S1359-835X(98)00117-1. [5] Lee, D.C., Lee, J.J., Yun, S.J. (1995). The mechanical characteristics of smart composite structures with embedded optical fiber sensors, Compos. Struct., 32(1–4), pp. 39–50, DOI: 10.1016/0263-8223(95)00038-0. [6] Silva, J.M.A., Devezas, T.C., Silva, A.P., Ferreira, J.A.M. (2005). Mechanical characterization of composites with embedded optical fibers, J. Compos. Mater., 39(14), pp. 1261–1281, DOI: 10.1177/ 0021998305050423. [7] Dasgupta, A., Wan, Y., Sirkis, J.S. (1992). Prediction of resin pocket geometry for stress analysis of optical fibers embedded in laminated composites, Smart Mater. Struct., 1(2), pp. 101–107, DOI: 10.1088/0964-1726/1/2/001. [8] Shivakumar, K., Emmanwori, L. (2004). Mechanics of Failure of Composite Laminates with an Embedded Fiber Optic Sensor, J. Compos. Mater., 38(8), pp. 669–680, DOI: 10.1177 /0021998304042393 . [9] Lammens, N., Luyckx, G., Voet, E., Van Paepegem, W., Degrieck, J. (2015). Finite element prediction of resin pocket geometry around embedded optical fiber sensors in prepreg composites, Compos. Struct., 132, pp. 825–832, DOI: 10.1016/j.compstruct.2015.07.003. [10] Shivakumar, K., Bhargava, A. (2005). Failure Mechanics of a Composite Laminate Embedded with a Fiber Optic Sensor, J. Compos. Mater. - J Compos MATER, 39(9), pp. 777–798, DOI: 10.1177 /0021998305048156 . [11] Al-Shawk, A., Tanabi, H., Sabuncuoglu, B. (2018). Investigation of stress distributions in the resin rich region and failure behavior in glass fiber composites with microvascular channels under tensile loading, Compos. Struct., 192(February), pp. 101–114, DOI: 10.1016/j.compstruct.2018.02.061. [12] Singh, H., Sirkis, J.S., Dasgupta, A. (1991).Microinteraction of optical fibers embedded in laminated composites. In: Claus, R.O., Udd, E., (Eds.), 1588, pp. 76–85. [13] Czarnek, R., Guo, Y.F., Bennett, K.D., Claus, R.O. (1989).Interferometric Measurements Of Strain Concentrations Induced By An Optical Fiber Embedded In A Fiber Reinforced Composite. In: Udd, E., (Ed.), p. 43. [14] Luyckx, G., Voet, E., DeWaele, W., Degrieck, J. (2010). Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametric study, Smart Mater. Struct., 19(10), DOI: 10.1088/0964-1726/19/10/105017. [15] Wagreich, R.B., Atia, W.A., Singh, H., Sirkis, J.S. (1996). Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre, Electron. Lett., 32(13), pp. 1223, DOI: 10.1049/el:19960806. [16] Udd, E. (2007). Review of multi-parameter fiber grating sensors, Fiber Opt. Sensors Appl. V, 6770, pp. 677002, DOI: 10.1117/12.753525. [17] Gafsi, R., El-Sherif, M.A. (2000). Analysis of Induced-Birefringence Effects on Fiber Bragg Gratings, Opt. Fiber Technol., 6(3), pp. 299–323, DOI: 10.1006/ofte.2000.0333. [18] Emmons, M.C., Carman, G.P., Mohanchandra, K.P., Richards, W.L. (2009).Characterization and birefringence effect on embedded optical fiber Bragg gratings. In: Kundu, T., (Ed.), Health Monitoring of Structural and Biological Systems 2009, 7295, p. 72950C. [19] Peters, K., Pattis, P., Botsis, J., Giaccari, P. (2000). Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields, Opt. Lasers Eng., 33(2), pp. 107–119, DOI: 10.1016/S0143-8166(00)00033-6. [20] Peters, K., Studer, M., Botsis, J., Iocco, A., Limberger, H., Salathé, R. (2001). Embeded optical fiber bragg grating sensor in a nonuniform strain field: Measurements and simulations, Exp. Mech., 41(1), pp. 19–28, DOI: 10.1007/BF02323100. [21] Huang, S., Ohn, M.M., LeBlanc, M., Measures, R.M. (1998). Continuous arbitrary strain profile measurements with fiber Bragg gratings, Smart Mater. Struct., 7(2), pp. 248–256, DOI: 10.1088/0964-1726/7/2/012. [22] Makhsidov, V., Fedotov, M., Shiyonok, A., Zuev, M. (2014). For an issue of embedded optical fibre in CFRP and strain measurement with fibre Bragg gratings sensors, J. Compos. Mech. Des., 20(4), pp. 568–574. [23] Majumder, M., Gangopadhyay, T.K., Chakraborty, A.K., Dasgupta, K., Bhattacharya, D.K. (2008). Fibre Bragg gratings in structural health monitoring-Present status and applications, Sensors Actuators, A Phys., pp. 150–164,
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=