Issue 51

S. Merdaci et alii, Frattura ed Integrità Strutturale, 51 (2020) 199-214; DOI: 10.3221/IGF-ESIS.51.16 204 The governing equations of equilibrium can be derived from Eqn.(10) by integrating the displacement gradients by parts and setting the coefficients δu , δv , δw b , and δw s zero separately. Thus, one can obtain the equilibrium equations associated with the present shear deformation theory, 2 2 2 2 2 2 2 2 2 2 : 0 : 0 : 2 0 : 2 0 xy x xy y b b b xy y x b s s s s s xy y xz yz x s N N u x y N N v x y M M M w q x y x y M M S S M w q x y x y x y                                             (15) A NALYTICAL SOLUTIONS FOR FGM SANDWICH PLATE he following simply-supported boundary conditions are imposed at the side edges of the FG sandwich plate:           0, 0, 0, 0, 0, 0 b s b s w w v y w y w y y y y y          (16a)           , , , , , 0 b s b s w w v a y w a y w a y a y a y y y          (16b)             0, 0, 0, , , , 0 b s b s x x x x x x N y M y M y N a y M a y M a y       (16c)           , 0 , 0 , 0 , 0 , 0 0 b s b s w w u x w x w x x x x x          (16d)           , , , , , 0 b s b s w w u x b w x b w x b x b x b x x          (16e)             , 0 , 0 , 0 , , , 0 b s b s y y y y y y N x M x M x N x b M x b M x b       (16f) Figure 2: Boundary conditions for full plate. T

RkJQdWJsaXNoZXIy MjM0NDE=